Annals of Global Analysis and Geometry

, Volume 28, Issue 3, pp 257–270 | Cite as

p-Laplace Operator and Diameter of Manifolds

  • Jean-François GrosjeanEmail author


Let \({(M^{n},g)}\) be a compact Riemannian manifold without boundary. In this paper, we consider the first nonzero eigenvalue of the p-Laplacian \({\lambda_{1,p}(M)}\) and we prove that the limit of \(p{\sqrt {\lambda_{1,p}(M)}}\) when \(p\rightarrow\infty\) is 2/d(M), where d(M) is the diameter of M. Moreover, if \({(M^{n},g)}\) is an oriented compact hypersurface of the Euclidean space \({\mathbb{R}^{n+1}}\) or \({\mathbb{S}^{n+1}}\), we prove an upper bound of \({\lambda_{1,p}(M)}\) in terms of the largest principal curvature κ over M. As applications of these results, we obtain optimal lower bounds of d(M) in terms of the curvature. In particular, we prove that if M is a hypersurface of \({\mathbb{R}^{n+1}}\) then: \(d(M)\ge\pi/\kappa\).


p-Laplacian hypersurfaces curvature geometric inequalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El Soufi, A. and Ilias, S.: Une inegalité du type ‘Reilly’ pour les sous-variétés de l'espace hyperbolique, Comment. Math. Helv. 67 (1992), 167–181.Google Scholar
  2. 2.
    Grosjean, J. F.: Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific J. Math. 206(1) (2002), 93–111.Google Scholar
  3. 3.
    Heintze, E.: Extrinsic upper bound for λ1, Math. Ann. 280 (1988), 389–402.CrossRefGoogle Scholar
  4. 4.
    Juutinen, P., Lindqvist, P. and Manfredi J. J.: The ∞-Eigenvalue problem, Arch. Rational Mech. Anal. 148 (1999), 89–105.CrossRefGoogle Scholar
  5. 5.
    Lindqvist, P.: On the equation div (|∇ u|p−2u)+λ|u|p−2 u = 0, Proc. Amer. Math. Soc. 109(1) (1990), 157–164.Google Scholar
  6. 6.
    Matei, A.-M.: First eigenvalue for the p-Laplace operator, Nonlinear Anal. Theory Methods Appl. A 39(8) (2000), 1051–1068.CrossRefGoogle Scholar
  7. 7.
    Reilly, R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), 525–533.Google Scholar
  8. 8.
    Serrin, J.: Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302.Google Scholar
  9. 9.
    Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institut Élie Cartan (Mathématiques)Université Henri Poincaré Nancy IVandoeuvre-Les-Nancy CedexFrance

Personalised recommendations