Abstract
Airborne pollen can trigger allergic reactions, but exposure is poorly understood because neither regional pollen models nor monitoring networks adequately capture the extensive spatial variation in pollen concentrations observed at urban scales. Here, we test whether pollen emissions from individual source plants can predict spatial variation in airborne pollen at scales of hundreds of meters to kilometers. To do so, we quantified pollen release within a city for oaks (Quercus) by mapping individual trees using remote sensing, calculating each tree’s pollen production with allometric equations, and estimating the timing of flowering with satellite-derived temperature data. We also measured airborne pollen concentrations multiple times a week at 9 sites in the first year and at 15 sites in the second year. Predicted pollen release explained 86% of the spatial variation in measured airborne pollen across the pollen season and 55% of local airborne pollen concentrations on any given day, whereas a traditional monitoring station measurements explained only 34% of spatiotemporal variation. Airborne pollen was best predicted by pollen release within approximately 1–2 km. Our results demonstrate that airborne pollen can be effectively modeled within cities by quantifying pollen release from individual trees. This type of approach could potentially be applied elsewhere, improving predictions of airborne pollen within cities and providing opportunities to avoid allergen exposure, fine-tune medication use, and better inform tree management decisions.
Graphical abstract




Similar content being viewed by others
References
Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. International Journal of Climatology, 33, 121–131. https://doi.org/10.1002/joc.3413
Adams-Groom, B., Skjoth, C. A., Baker, M., & Welch, T. E. (2017). Modelled and observed surface soil pollen deposition distance curves for isolated trees of Carpinus betulus, Cedrus atlantica. Juglans Nigra and Platanus Acerifolia. Aerobiologia, 33(3), 1–10. https://doi.org/10.1007/s10453-017-9479-1
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1100705.
American Academy of Allergy Asthma & Immunology. (2022). National Allergy Bureau. https://www.aaaai.org/global/nab-pollen-counts/about-the-nab. Accessed 1 January 2022
Anenberg, S., Weinberger, K. R., Roman, H., Neumann, J., Crimmins, A., Fann, N., & Kinney, P. L. (2017). Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. GeoHealth, 1(3), 80–92. https://doi.org/10.1002/2017GH000055
Arnold, E., Strohbach, M., & Warren, P. (2014). Allergenic potential of street trees in Boston, Massachusetts. In N. Kabisch (Ed.), Human-environmental interactions in cities : Challenges and opportunities of urban land use planning and green infrastructure (pp. 115–141). Cambridge Scholars Publishing.
Barrett, M., Combs, V., Su, J. G., Henderson, K., Tuffli, M., Simrall, G., AIR Louisville Collaborative. (2018). AIR Louisville: Addressing asthma with technology, crowdsourcing, cross-sector collaboration, and policy. Health Affairs, 37(4), 525–534. https://doi.org/10.1377/hlthaff.2017.1315
Bash, J. O., Baker, K. R., & Beaver, M. R. (2016). Evaluation of improved land use and canopy representation in BEIS v3.61 with biogenic VOC measurements in California. Geoscientific Model Development, 9(6), 2191–2207.
Beery, S., Wu, G., Edwards, T., Pavetic, F., Majewski, B., Mukherjee, S., & Huang, J. (2022). The auto arborist dataset : A large-scale benchmark for multiview urban forest monitoring under domain shift. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3, 21294–21307.
Bogawski, P., Grewling, L., Dziób, K., Sobieraj, K., Dalc, M., Dylawerska, B., & Jackowiak, B. (2019). Lidar-derived tree crown parameters: Are they new variables explaining local birch (Betula sp.) pollen concentrations? Forests. https://doi.org/10.3390/F10121154
Bricchi, E., Frenguelli, G., & Mincigrucci, G. (2000). Experimental results about Platanus pollen deposition. Aerobiologia, 16, 347–352. https://doi.org/10.1023/A:1026701028901
Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W., Heidema, A. H., Nabuurs, G. J., & Gunia, K. (2012). Statistical mapping of tree species over Europe. European Journal of Forest Research, 131, 145–157. https://doi.org/10.1007/s10342-011-0513-5
Cai, T., Zhang, Y., Ren, X., Bielory, L., Mi, Z., Nolte, C. G., & Georgopoulos, P. G. (2019). Development of a semi-mechanistic allergenic pollen emission model. Science of the Total Environment, 653, 947–957. https://doi.org/10.1016/j.scitotenv.2018.10.243
Canty, A., & Ripley, B. (2019). Boot: Bootstrap R (S-Plus) functions. http://cran.r-project.org/web/packages/boot/
Cariñanos, P., & Casares-Porcel, M. (2011). Urban green zones and related pollen allergy: A review. some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning, 101(3), 205–214. https://doi.org/10.1016/j.landurbplan.2011.03.006
Carlsten, C., Salvi, S., Wong, G. W. K., & Chung, K. F. (2020). Personal strategies to minimise effects of air pollution on respiratory health: Advice for providers, patients and the public. European Respiratory Journal, 55(6), 1902056. https://doi.org/10.1183/13993003.02056-2019
Charalampopoulos, A., Damialis, A., Tsiripidis, I., Mavrommatis, T., Halley, J. M., & Vokou, D. (2013). Pollen production and circulation patterns along an elevation gradient in Mt Olympos (Greece) national park. Aerobiologia, 29(4), 455–472. https://doi.org/10.1007/s10453-013-9296-0
Charalampopoulos, A., Lazarina, M., Tsiripidis, I., & Vokou, D. (2018). Quantifying the relationship between airborne pollen and vegetation in the urban environment. Aerobiologia, 34(3), 1–16. https://doi.org/10.1007/s10453-018-9513-y
Compalati, E., Ridolo, E., Passalacqua, G., Braido, F., Villa, E., & Canonica, G. W. (2010). The link between allergic rhinitis and asthma: The united airways disease. Expert Review of Clinical Immunology, 6(3), 413–423. https://doi.org/10.1586/eci.10.15
Custovic, A. (2017). Epidemiology of allergic diseases. Middleton’s Allergy Essentials (pp. 51–72). Elsevier.
Damialis, A., Fotiou, C., Halley, J. M., & Vokou, D. (2011). Effects of environmental factors on pollen production in anemophilous woody species. Trees, 25(2), 253–264. https://doi.org/10.1007/s00468-010-0502-1
Darrow, L., Hess, J., Rogers, C., Tolbert, P., Klein, M., & Sarnat, S. (2012). Ambient pollen concentrations and emergency department visits for asthma and wheeze. The Journal of Allergy and Clinical Immunology, 130(3), 630-638.e4. https://doi.org/10.1016/j.jaci.2012.06.020
Deguire, P., Cao, B., Wisnieski, L., Strane, D., Wahl, R., Lyon-Callo, S., & Garcia, E. (2016). Detroit: The Current Status of the Asthma Burden. https://www.michigan.gov/documents/mdhhs/Detroit-AsthmaBurden_516668_7.pdf
Efstathiou, C., Isukapalli, S., & Georgopoulos, P. (2011). A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmospheric Environment, 45(13), 2260–2276. https://doi.org/10.1016/j.atmosenv.2010.12.008
Erbas, B., Jazayeri, M., Lambert, K. A., Katelaris, C. H., Prendergast, L. A., Tham, R., Parrodi, M. J., Davies, J., Newbigin, E., Abramson, M. J., & Dharmage, S. C. (2018). Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: A systematic review and meta-analysis. Allergy, 73(8), 1632–1641. https://doi.org/10.1111/all.13407
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9), 1–21. https://doi.org/10.3390/RS12091471
European Aeroallergen Network. (2020). European Aeroallergen Network. https://ean.polleninfo.eu/Ean/. Accessed 1 January 2020
Fassnacht, F. E., Latifi, H., Sterenczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., & Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64–87. https://doi.org/10.1016/j.rse.2016.08.013
Fernández-González, M., González-Fernández, E., Ribeiro, H., Ilda Abreu, F., & Rodríguez-Rajo, J. (2020). Pollen production of quercus in the north-western iberian peninsula and airborne pollen concentration trends during the last 27 years. Forests, 11(6), 702. https://doi.org/10.3390/f11060702
Fernández-Martínez, M., Belmonte, J., & Maria Espelta, J. (2012). Masting in oaks: Disentangling the effect of flowering phenology, airborne pollen load and drought. Acta Oecologica, 43, 51–59. https://doi.org/10.1016/j.actao.2012.05.006
Gómez-Casero, M. T., Hidalgo, P. J., García-Mozo, H., Domínguez, E., & Galán, C. (2004). Pollen biology in four Mediterranean Quercus species. Grana, 43, 22–30. https://doi.org/10.1080/00173130410018957
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2016). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Hauer, R. J., & Peterson, W. D. (2016). Municipal tree care and management in the united states: A 2014 urban and community forestry census of tree activities. special publication (Vol. 16). College of Natural Resources, University of Wisconsin - Stevens Point
Hjort, J., Hugg, T. T., Antikainen, H., Rusanen, J., Sofiev, M., Jaakkola, M. S., & Jaakkola, J. J. K. (2016). Fine-scale exposure to allergenic pollen in the urban environment: Evaluation of land use regression approach. Environmental Health Perspectives, 124(5), 619–626. https://doi.org/10.1289/ehp.1509761
Jimenez-Munoz, J. C., Sobrino, J. A., Skokovic, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032
Katz, D. S. W., & Batterman, S. A. (2020). Urban-scale variation in pollen concentrations: A single station is insufficient to characterize daily exposure. Aerobiologia, 36, 417–431. https://doi.org/10.1007/s10453-020-09641-z
Katz, D. S. W., Batterman, S. A., & Brines, S. J. (2020a). Improved classification of urban trees using a widespread multi-temporal aerial image dataset. Remote Sensing, 12(15), 2475. https://doi.org/10.3390/rs12152475
Katz, D. S. W., & Carey, T. S. (2014). Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales. Science of the Total Environment, 485, 435–440. https://doi.org/10.1016/j.scitotenv.2014.03.099
Katz, D. S. W., Dzul, A., Kendel, A., & Batterman, S. A. (2019). Effect of intra-urban temperature variation on tree flowering phenology, airborne pollen, and measurement error in epidemiological studies of allergenic pollen. Science of the Total Environment, 653, 1213–1222. https://doi.org/10.1016/j.scitotenv.2018.11.020
Katz, D. S. W., Morris, J. R., & Batterman, S. A. (2020b). Pollen production for 13 urban North American tree species: Allometric equations for tree trunk diameter and crown area. Aerobiologia, 36, 401–415. https://doi.org/10.1007/s10453-020-09638-8
Keller, J. K. K., & Konijnendijk, C. C. (2012). Short communication: A comparative analysis of municipal urban tree inventories of selected major cities in North America and Europe. Arboriculture and Urban Forestry, 38(1), 24–30.
Kim, K. R., Oh, J. W., Woo, S. Y., Seo, Y. A., Choi, Y. J., Kim, H. S., & Kim, B. J. (2018). Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen? International Journal of BioMeteorology. https://doi.org/10.1007/s00484-018-1558-7
Kontos, S., Papadogiannaki, S., Parliari, D., Steiner, A. L., & Melas, D. (2022). High resolution modeling of Quercus pollen with an Eulerian modeling system: A case study in Greece. Atmospheric Environment, 268, 118816. https://doi.org/10.1016/j.atmosenv.2021.118816
Kurganskiy, A., Skjøth, C. A., Baklanov, A., Sofiev, M., Saarto, A., Severova, E., & Kaas, E. (2020). Incorporation of pollen data in source maps is vital for pollen dispersion models. Atmospheric Chemistry and Physics, 20, 2099–2121.
Lee, S. W., Yon, D. K., James, C. C., Lee, S., Koh, H. Y., Sheen, Y. H., & Sugihara, G. (2019). Short-term effects of multiple outdoor environmental factors on risk of asthma exacerbations: Age-stratified time-series analysis. Journal of Allergy and Clinical Immunology, 144(6), 1542-1550.e1. https://doi.org/10.1016/j.jaci.2019.08.037
Li, Y., Nielsen, A. B., Zhao, X., Shan, L., Wang, S., Wu, J., & Zhou, L. (2015). Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China. Review of Palaeobotany and Palynology, 216, 92–100. https://doi.org/10.1016/j.revpalbo.2015.02.003
Martin, M. D., Chamecki, M., & Brush, G. S. (2010). Anthesis synchronization and floral morphology determine diurnal patterns of ragweed pollen dispersal. Agricultural and Forest Meteorology, 150(9), 1307–1317. https://doi.org/10.1016/j.agrformet.2010.06.001
Massetti, L., Petralli, M., & Orlandini, S. (2015). The effect of urban morphology on Tilia×europaea flowering. Urban Forestry and Urban Greening, 14(1), 187–193. https://doi.org/10.1016/j.ufug.2014.10.005
Maya-Manzano, J. M., Smith, M., Markey, E., Hourihane, J., Sodeau, J., & O’Connor, D. J. (2021). Recent developments in monitoring and modelling airborne pollen, a review. Grana, 60(1), 1–19. https://doi.org/10.1080/00173134.2020.1769176
Maya-Manzano, J. M., Tormo Molina, R., Fernandez Rodriguez, S., Silva Palacios, I., & Gonzalo Garijo, A. (2017). Distribution of ornamental urban trees and their influence on airborne pollen in the SW of Iberian Peninsula. Landscape and Urban Planning, 157, 434–446. https://doi.org/10.1016/j.landurbplan.2016.08.011
McInnes, R. N., Hemming, D., Burgess, P., Lyndsay, D., Osborne, N. J., Skjøth, C. A., & Vardoulakis, S. (2017). Mapping allergenic pollen vegetation in UK to study environmental exposure and human health. Science of the Total Environment, 599–600, 483–499.
Meltzer, E. O., Blaiss, M. S., Derebery, M. J., Mahr, T. A., Gordon, B. R., Sheth, K. K., & Boyle, J. (2009). Burden of allergic rhinitis: Results from the pediatric allergies in America survey. Journal of Allergy and Clinical Immunology, 124(3 Suppl. 1), 43–70. https://doi.org/10.1016/j.jaci.2009.05.013
Mimet, A., Pellissier, V., Quénol, H., Aguejdad, R., Dubreuil, V., & Rozé, F. (2009). Urbanisation induces early flowering: Evidence from Platanus acerifolia and Prunus cerasus. International Journal of Biometeorology, 53(3), 287–298. https://doi.org/10.1007/s00484-009-0214-7
Mitton, J. B., & Williams, C. G. (2006). Gene flow in conifers. In C. G. Williams (Ed.), Landscapes, Genomics and Transgenic Conifers (pp. 147–168). Dordrecht: Springer. https://doi.org/10.1007/1-4020-3869-0_9
Mosnaim, G., Safioti, G., Brown, R., DePietro, M., Szefler, S. J., Lang, D. M., Portnoy, J. M., Bukstein, D. A., Bacharier, L. B., & Merchant, R. K. (2021). Digital health technology in asthma: A comprehensive scoping review. The Journal of Allergy and Clinical Immunology: in Practice, 9(6), 2377–2398. https://doi.org/10.1016/j.jaip.2021.02.028
Nayak, A. S. (2003). The asthma and allergic rhinitis link. Allergy and Asthma Proceedings, 24(6), 395–402.
O’Leary, B. F., Hill, A. B., Akers, K. G., Esparra-Escalera, H. J., Lucas, A., Raoufi, G., & Dittrich, T. M. (2022). Air quality monitoring and measurement in an urban airshed: Contextualizing datasets from the Detroit Michigan area from 1952 to 2020. Science of the Total Environment, 809, 152120. https://doi.org/10.1016/j.scitotenv.2021.152120
Pasken, R., & Pietrowicz, J. A. (2005). Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmospheric Environment, 39, 7689–7701. https://doi.org/10.1016/j.atmosenv.2005.04.043
Pauling, A., Clot, B., Menzel, A., & Jung, S. (2020). Pollen forecasts in complex topography: Two case studies from the Alps using the numerical pollen forecast model COSMO-ART. Aerobiologia, 36, 25–30. https://doi.org/10.1007/s10453-019-09590-2
Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., & Oksanen, A. (2008). Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management, 255(3–4), 643–650. https://doi.org/10.1016/j.foreco.2007.09.040
Robichaud, A., & Comtois, P. (2021). Numerical modelling of birch pollen dispersion in Canada. Environmental Research, 194, 110554. https://doi.org/10.1016/j.envres.2020.110554
Rojo, J., Salido, P., & Pérez-Badia, R. (2015). Flower and pollen production in the ‘Cornicabra’ olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees, 29(4), 1235–1245. https://doi.org/10.1007/s00468-015-1203-6
Schueler, S., & Schlunzen, K. H. (2006). Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modeling & Assessment, 11, 179–194. https://doi.org/10.1007/s10666-006-9044-8
Skjøth, C. A., Ørby, P. V., Becker, T., Geels, C., Schlünssen, V., Sigsgaard, T., & Hertel, O. (2013). Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences, 10(1), 541–554. https://doi.org/10.5194/bg-10-541-2013
Sofiev, M., & Bergmann, K. C. (2012). Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4881-1
Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., & Peuch, V. H. (2015). MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry and Physics, 15, 8243–8281. https://doi.org/10.5194/acpd-15-8243-2015
Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimaki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402. https://doi.org/10.1007/s00484-006-0027-x
Stuart, G., Gries, C., & Hope, D. (2006). The relationship between pollen and extant vegetation across an arid urban ecosystem and surrounding desert in Southwest USA. Journal of Biogeography, 33, 573–591. https://doi.org/10.1111/j.1365-2699.2005.01334.x
Sun, X., Waller, A., Yeatts, K. B., & Thie, L. (2016). Pollen concentration and asthma exacerbations in Wake County, North Carolina, 2006–2012. Science of the Total Environment, 544, 185–191. https://doi.org/10.1016/j.scitotenv.2015.11.100
Taylor, S. D., & White, E. P. (2020). Automated data-intensive forecasting of plant phenology throughout the United States. Ecological Applications, 30(1), 1–10. https://doi.org/10.1002/eap.2025
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S., & Wilson, B. E. (2020). Daymet: Daily surface weather data on a 1-km grid for North America, Version 4. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1840
Velasquez-Camacho, L., Cardil, A., Mohan, M., Etxegarai, M., Anzaldi, G., & de Miguel, S. (2021). Remotely sensed tree characterization in Urban areas: A review. Remote Sensing, 13(23), 4889. https://doi.org/10.3390/rs13234889
Verstraeten, W. W., Kouznetsov, R., Hoebeke, L., Bruffaerts, N., Sofiev, M., & Delcloo, A. W. (2021). Modelling grass pollen levels in Belgium. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.141903
Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814. https://doi.org/10.1007/s00484-008-0174-3
Wang, K., Wang, T., & Liu, X. (2019). A review: Individual tree species classification using integrated airborne LiDAR and optical imagery with a focus on the urban environment. Forests, 10(1), 1–18. https://doi.org/10.3390/f10010001
Wasilevich, E., Lyon-Callo, S., Rafferty, A., & Dombkowski, K. (2008). Detroit -the epicenter of asthma Burden. In Epidemiology of Asthma in Michigan (pp. 1–28). Bureau of Epidemiology, Michigan Department of Community Health. https://www.michigan.gov/documents/mdch/14_Ch12_Detroit_Epicenter_of_Asthma_276687_7.pdf
Weinberger, K. R., Kinney, P. L., & Lovasi, G. S. (2015). A review of spatial variation of allergenic tree pollen within cities. Arboriculture & Urban Forestry, 41(2), 57–68.
Weinberger, K. R., Kinney, P. L., Robinson, G. S., Sheehan, D., Kheirbek, I., Matte, T. D., & Lovasi, G. S. (2018). Levels and determinants of tree pollen in New York City. Journal of Exposure Science and Environmental Epidemiology, 28(2), 119–124. https://doi.org/10.1038/jes.2016.72
Werchan, B., Werchan, M., Mücke, H.-G., Gauger, U., Simoleit, A., Zuberbier, T., & Bergmann, K.-C. (2017). Spatial distribution of allergenic pollen through a large metropolitan area. Environmental Monitoring and Assessment, 189(4), 169. https://doi.org/10.1007/s10661-017-5876-8
Werner, M., Guzikowski, J., Kryza, M., Malkiewicz, M., Bilińska, D., Skjøth, C. A., & Ziemianin, M. (2021). Extension of WRF-Chem for birch pollen modelling—a case study for Poland. International Journal of Biometeorology, 65(4), 513–526. https://doi.org/10.1007/s00484-020-02045-1
Wozniak, M. C., & Steiner, A. (2017). A prognostic pollen emissions model for climate models (PECM1.0). Geoscientific Model Development, 10(11), 4105–4127. https://doi.org/10.5194/gmd-10-4105-2017
Yasaka, M., Kobayashi, S., Takeuchi, S., Tokuda, S., Takiya, M., & Ohno, Y. (2009). Prediction of birch airborne pollen counts by examining male catkin numbers in Hokkaido, northern Japan. Aerobiologia, 25(2), 111–117. https://doi.org/10.1007/s10453-009-9116-8
Zapata-Marin, S., Schmidt, A. M., Weichenthal, S., Katz, D. S. W., Takaro, T., Brook, J., & Lavigne, E. (2021). Within city spatiotemporal variation of pollen concentration in the city of Toronto Canada. Environmental Research, 206, 112566. https://doi.org/10.1016/j.envres.2021.112566
Zhang, R., Duhl, T., Salam, M. T., House, J. M., Flagan, R. C., Avol, E. L., & VanReken, T. M. (2013). Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences, 10(3), 3977–4023. https://doi.org/10.5194/bgd-10-3977-2013.Development
Zhang, Y., Bielory, L., Mi, Z., Cai, T., Robock, A., & Georgopoulos, P. (2015). Allergenic pollen season variations in the past two decades under changing climate in the United States. Global Change Biology, 21, 1581–1589. https://doi.org/10.1111/gcb.12755
Ziska, L., Knowlton, K., Rogers, C., Dalan, D., Tierney, N., Elder, M. A., & Frenz, D. (2011). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences, 108(10), 4248–4251.https://doi.org/10.1073/pnas.1014107108
Acknowledgements
This work was supported by the National Institute of Environmental Health Sciences through a NRSA postdoctoral fellowship (Grant Number F32 ES026477). It was also supported by the Michigan Institute for Clinical Health Research through the Postdoctoral Translational Scholars Program (Grant Number UL1 TR002240). S. Batterman also acknowledges support from Grant P30ES017885 from the National Institute of Environmental Health Sciences, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank John Kost, Victoria Bankowski, and Jonathan Morris for their assistance collecting and processing samples, Shannon Brines for help with remote sensing analyses, Dr. Andrew Dzul and Amber Kendel of Lakeshore Ear, Nose, and Throat for providing access to their pollen monitoring data, and the volunteers in Detroit who allowed us to monitor pollen on their properties. We also thank Drs. Inés Ibáñez, Elizabeth Matsui, Shalene Jha, Marian Schmidt, and Deborah Goldberg and their laboratories for feedback on this research project and manuscript.
Author information
Authors and Affiliations
Contributions
DK led all phases of the study with advising and review by SB. AB provided additional input on study conception, design, and implications.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Supplementary Information
Below is the link to the electronic supplementary material.

Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Katz, D.S.W., Baptist, A.P. & Batterman, S.A. Modeling airborne pollen concentrations at an urban scale with pollen release from individual trees. Aerobiologia 39, 181–193 (2023). https://doi.org/10.1007/s10453-023-09784-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10453-023-09784-9


