Skip to main content

Advertisement

Log in

Danger of exposure to keratinophilic fungi and other dermatophytes in recreational place in the northeast region of India

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Keratinophilic fungi are a group of environmentally and epidemiologically important fungi that cycle a recalcitrant animal protein know as keratin. A large group of keratinophilic fungi cause diseases in human and animal mycoses so called as dermatophytes. The present study was undertaken to evaluate the diversity and activity for the group of keratinophilic fungi from the humus of “Phumdis” in Loktak Lake. Keratin-degrading keratinophilic fungus was isolated from the humus of “Phumdis” collected from fresh water Loktak Lake. The isolated fungal strains were initially identified on the basis of macro- and microscopic characteristics and confirmed using molecular approach. This study indicates first time that this Loktak Lake is a significant reservoir of keratinophilic fungi which can pose a health risk to its users, particularly the tourists and the employees. The keratinolytic activity of these fungi is crucial to cause superficial infections in human and animals, and recycling of keratinic material of this atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd El Hafez A, Abd El Hafez S, Mohawad S, Said A (1991) Composition, occurrence and cellulolytic activities of fungi inhabiting soils along Idfu-Marsa Alam road at eastern desert, Egypt. Bulletin of the Faculty of Science

  • Agrawal, S., Adholeya, A., Barrow, C. J., & Deshmukh, S. K. (2018). In-vitro evaluation of marine derived fungi against Cutibacterium acnes. Anaerobe, 49, 5–13.

    Article  Google Scholar 

  • Ali-Shtayeh, M., Khaleel, T. K. M., & Jamous, R. M. (2003). Ecology of dermatophytes and other keratinophilic fungi in swimming pools and polluted and unpolluted streams. Mycopathologia, 156(3), 193–205.

    Article  Google Scholar 

  • Aly, R., Hay, R., Palacio, Ad., & Galimberti, R. (2000). Epidemiology of tinea capitis. Medical Mycology, 38(sup1), 183–188.

    Article  Google Scholar 

  • Anbu, P., Gopinath, S. C., Hilda, A., Mathivanan, N., & Annadurai, G. (2006). Secretion of keratinolytic enzymes and keratinolysis by Scopulariopsis brevicaulis and Trichophyton mentagrophytes: Regression analysis. Canadian Journal of Microbiology, 52(11), 1060–1069.

    Article  CAS  Google Scholar 

  • Cabañes, F., Abarca, L., Bragulat, M. R., & Calvo, M. A. (1987). Further observations on the keratinolytic activity of strains of the genus Epidermophyton. Mycopathologia, 98(1), 41–43.

    Article  Google Scholar 

  • Călin M, Constantinescu-Aruxandei D, Alexandrescu E, Răut I, Doni MB, Arsene M-L, Oancea F, Jecu L, Lazăr V (2017) Degradation of keratin substrates by keratinolytic fungi. Electronic Journal of Biotechnology

  • Călin, M., Drăcea, O., Răut, I., Vasilescu, G., Doni, M. B., Arsene, M. L., Alexandrescu, E., Constantinescu-aruxandei, D., Jecu, L., & Lazăr, V. (2016). vitro biodegradation of keratinized substrates by keratinophilic fungi. Scientific Bulletin Series F Biotechnologies, 20(248), 253.

    Google Scholar 

  • Cao, L., Tan, H., Liu, Y., Xue, X., & Zhou, S. (2008). Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Letters in Applied Microbiology, 46(3), 389–394.

    Article  CAS  Google Scholar 

  • Ciesielska, A., Kawa, A., Kanarek, K., Soboń, A., & Szewczyk, R. (2021). Metabolomic analysis of Trichophyton rubrum and Microsporum canis during keratin degradation. Scientific Reports, 11(1), 1–10.

    Article  CAS  Google Scholar 

  • Descamps F, Brouta F, Vermout S, Monod M, Losson B, Mignon B (2003) Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunology & Medical Microbiology 38 (1):29–34

  • Deshmukh, S., & Agrawal, S. (1983). Prevalence of Dermatophytes and Other Keratinophilic Fungi in Soils of Madhya Pradesh (India)/Dermatophyten und andere keratinophile Pilze im Boden von Madhya Pradesh (Indien). Mycoses, 26(11), 574–577.

    Article  CAS  Google Scholar 

  • Deshmukh, S., Verekar, S., & Chavan, Y. (2018). Keratinophilic fungi from the vicinity of salt pan soils of Sambhar lake Rajasthan (India). Journal De Mycologie Medicale, 28(3), 457–461.

    Article  CAS  Google Scholar 

  • Deshmukh, S. K., Verekar, S. A., & Chavan, Y. G. (2017). Incidence of Keratinophilic Fungi from the Selected Soils of Kaziranga National Park, Assam (India). Mycopathologia, 182(3–4), 371–377.

    Article  CAS  Google Scholar 

  • Dey N, Kakoti L (1955) Microsporum gypseum in India. Journal of the Indian Medical Association 25 (5)

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi. Volume 1. Academic Press London

  • Doveri, F., Pecchia, S., Vergara, M., Sarrocco, S., & Vannacci, G. (2012). A comparative study of Neogymnomyces virgineus, a new keratinolytic species from dung, and its relationships with the Onygenales. Fungal Diversity, 52(1), 13–34.

    Article  Google Scholar 

  • Edel, V., Christian, S., Gautheron, N., Recorbet, G., & Alabouvette, C. (2001). Genetic diversity of Fusarium oxysporum populations isolated from different soils in France. FEMS Microbiology Ecology, 36(1), 61–71.

    Article  CAS  Google Scholar 

  • Fernandes, T. R., Segorbe, D., Prusky, D., & Di Pietro, A. (2017). How alkalinization drives fungal pathogenicity. PLoS pathogens, 13(11), e1006621.

    Article  CAS  Google Scholar 

  • Garg A, Gandotra S, Mukerji K, Pugh G (1985) Ecology of keratinophilic fungi. Proceedings: Plant Sciences 94 (2–3):149–163

  • Garg AK (1966) Isolation of dermatophytes and other keratinophilic fungi from soils in India. Sabouraudia: Journal of Medical and Veterinary Mycology 4 (4):259–264

  • Gherbawy, Y. (1999). Keratinolytic and keratinophilic fungi of graveyard’s soil and air in the city of Qena and their response to garlic extract and onion oil treatments. Egyptian Journal of Microbiology, 34(1), 1–22.

    Google Scholar 

  • Gnat S, Łagowski D, Nowakiewicz A, Dyląg M (2021) A global view on fungal infections in humans and animals: Infections caused by dimorphic fungi and dermatophytoses. Journal of Applied Microbiology

  • Gnat, S., Łagowski, D., Nowakiewicz, A., & Zięba, P. (2019). The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses, 62(3), 274–283.

    Article  CAS  Google Scholar 

  • Gupta, A. K., Baran, R., & Summerbell, R. C. (2000). Fusarium infections of the skin. Current Opinion in Infectious Diseases, 13(2), 121–128.

    Article  Google Scholar 

  • Hermosa, M., Grondona, I., Et, I., Diaz-Minguez, J., Castro, C., Monte, E., & Garcia-Acha, I. (2000). Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology, 66(5), 1890–1898.

    Article  CAS  Google Scholar 

  • Hocquette, A., Grondin, M., Bertout, S., & Mallié, M. (2005). Les champignons des genres acremonium, beauveria, chrysosporium, fusarium, onychocola, paecilomyces, penicillium, scedosporium et scopulariopsis responsables de hyalohyphomycoses. Journal De Mycologie Médicale, 15(3), 136–149.

    Article  Google Scholar 

  • Hu J, Zhou Y, Chen K, Li J, Wei Y, Wang Y, Wu Y, Ryder MH, Yang H, Denton MD (2020) Large‐scale Trichoderma diversity was associated with ecosystem, climate and geographic location. Environmental Microbiology

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (2012) PCR protocols: a guide to methods and applications. Academic press,

  • Ismail, A.-M.S., Housseiny, M. M., Abo-Elmagd, H. I., El-Sayed, N. H., & Habib, M. (2012). Novel keratinase from Trichoderma harzianum MH-20 exhibiting remarkable dehairing capabilities. International Biodeterioration & Biodegradation, 70, 14–19.

    Article  CAS  Google Scholar 

  • Kamalam, A., Ajithadass, K., Sentamilselvi, G., & Thambiah, A. (1992). Paronychia and black discoloration of a thumb nail caused by Curvularia lunata. Mycopathologia, 118(2), 83–84.

    Article  CAS  Google Scholar 

  • Kumar, S., Tamura, K., & Nei, M. (1994). MEGA: Molecular evolutionary genetics analysis software for microcomputers. Computer Applications in the Biosciences: CABIOS, 10(2), 189–191.

    CAS  Google Scholar 

  • Lee, S. H., Nguyen, T. T., & Lee, H. B. (2018). Isolation and characterization of two rare mucoralean species with specific habitats. Mycobiology, 46(3), 205–214.

    Article  Google Scholar 

  • Lipovy, B., Kocmanova, I., Holoubek, J., Hanslianova, M., Bezdicek, M., Rihova, H., Suchanek, I., & Brychta, P. (2018). The first isolation of Westerdykella dispersa in a critically burned patient. Folia Microbiologica, 63(4), 479–482.

    Article  CAS  Google Scholar 

  • Marchisio, V. F. (2000). Keratinophilic fungi: Their role in nature and degradation of keratinic substrates. Biology of Dermatophytes and Other Keratinophilic Fungi, 17, 86–92.

    Google Scholar 

  • Mijiti, J., Pan, B., de Hoog, S., Horie, Y., Matsuzawa, T., Yilifan, Y., Liu, Y., Abliz, P., Pan, W., & Deng, D. (2017). Severe chromoblastomycosis-like cutaneous infection caused by Chrysosporium keratinophilum. Frontiers in Microbiology, 8, 83.

    Article  Google Scholar 

  • Mishra, K. N., Aaggarwal, A., Abdelhadi, E., & Srivastava, D. (2010). An efficient horizontal and vertical method for online dna sequence compression. International Journal of Computer Applications, 3(1), 39–46.

    Article  Google Scholar 

  • Monod, M. (2008). Secreted proteases from dermatophytes. Mycopathologia, 166(5–6), 285.

    Article  Google Scholar 

  • Narula, H., Meena, S., Jha, S., Kaistha, N., Pathania, M., & Gupta, P. (2020). Curvularia lunata causing orbital cellulitis in a diabetic patient: An old fungus in a new territory. Current Medical Mycology, 6(1), 51.

    Google Scholar 

  • Nucci, M., & Anaissie, E. (2007). Fusarium infections in immunocompromised patients. Clinical Microbiology Reviews, 20(4), 695–704.

    Article  CAS  Google Scholar 

  • Nwadiaro P, Chuku A, Onyimba I, Ogbonna A, Nwaukwu I, Adekojo D (2015) Keratin degradation by Penicillium purpurogenum isolated from tannery soils in Jos, Nigeria.

  • Pachade, G., Bhatkar, N., & Hande, D. (2014). Incidences of mycotic infections in Channa punctatus of Wadali lake, Amravati, MS, India. International Research Journal of Biological Sciences, 3(11), 47–50.

    Google Scholar 

  • Patel, G. A., & Schwartz, R. A. (2011). Tinea capitis: Still an unsolved problem? Mycoses, 54(3), 183–188.

    Article  Google Scholar 

  • Ramesh, V., & Hilda, A. (1998). Incidence of keratinophilic fungi in the soil of primary schools and public parks of Madras city. India. Mycopathologia, 143(3), 139–145.

    Article  Google Scholar 

  • Ramnani, P., & Gupta, R. (2004). Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnology and Applied Biochemistry, 40(2), 191–196.

    Article  CAS  Google Scholar 

  • Randhawa Hu, Sandhu R (1965) A survey of soil inhabiting dermatophytes and related keratinophilic fungi of India. Sabouraudia: Journal of Medical and Veterinary Mycology 4 (2):71–79

  • Robati, A. K., Khalili, M., Hazaveh, S. J. H., & Bayat, M. (2018). Assessment of the subtilisin genes in Trichophyton rubrum and Microsporum canis from dermatophytosis. Comparative Clinical Pathology, 27(5), 1343–1347.

    Article  CAS  Google Scholar 

  • Sharma, M., & Sharma, M. (2009). Influence of environmental factors on the growth and sporulation of geophilic keratinophiles from soil samples of Public Park. Asian Journal of Experimental Sciences, 23(1), 307–312.

    Google Scholar 

  • Sharma, R., Sharma, R., & Crous, P. W. (2015). Matsushimamyces, a new genus of keratinophilic fungi from soil in central India. IMA Fungus, 6(2), 337–343.

    Article  Google Scholar 

  • Shen JJ, Arendrup MC, Verma S, Saunte DML (2021) The Emerging Terbinafine-Resistant Trichophyton Epidemic: What Is the Role of Antifungal Susceptibility Testing? Dermatology:1–20

  • Sigler L, Carmichael J (1976) Taxonomy of Malbranchea and some other Hyphomycetes with arthroconidia [Fungi, new taxa]. Mycotaxon

  • Singh, I., Kushwaha, R. K. S., & Parihar, P. (2009). Keratinophilic fungi in soil of potted plants of indoor environments in Kanpur, India, and their proteolytic ability. Mycoscience, 50(4), 303–307.

    Article  CAS  Google Scholar 

  • Stebbins, W. G., Krishtul, A., Bottone, E. J., Phelps, R., & Cohen, S. (2004). Cutaneous adiaspiromycosis: A distinct dermatologic entity associated with Chrysosporium species. Journal of the American Academy of Dermatology, 51(5), S185–S189.

    Article  Google Scholar 

  • Suchonwanit, P., Chaiyabutr, C., & Vachiramon, V. (2015). Primary cutaneous Chrysosporium infection following ear piercing: A case report. Case Reports in Dermatology, 7(2), 136–140.

    Article  Google Scholar 

  • Sue, P. K., Gurda, G. T., Lee, R., Watkins, T., Green, R., Memon, W., Milstone, A. M., Zelazny, A. M., Fahle, G. A., & Pham, T. A. (2014). First report of Westerdykella dispersa as a cause of an angioinvasive fungal infection in a neutropenic host. Journal of Clinical Microbiology, 52(12), 4407–4411.

    Article  Google Scholar 

  • Takhelmayum K, Gupta S (2011) Distribution of aquatic insects in phumdis (floating island) of Loktak Lake, Manipur, northeastern India. Journal of Threatened Taxa:1856–1861

  • Tóth, E. J., Varga, M., Takó, M., Homa, M., Jáger, O., Hermesz, E., Orvos, H., Nagy, G., Vágvölgyi, C., & Papp, T. (2020). Response of Human Neutrophil Granulocytes to the Hyphae of the Emerging Fungal Pathogen Curvularia lunata. Pathogens, 9(3), 235.

    Article  CAS  Google Scholar 

  • Van Oorschot CA (1980) A revision of Chrysosporium and allied genera. Studies in mycology (20)

  • Vanbreuseghem, R. (1952). Technique biologique pour l’isolement des dermatophytes du sol. Ann Soc Belge Med Trop, 32(2), 173–178.

    CAS  Google Scholar 

  • Verekar SA, Deshmukh SK (2017) Keratinophilic fungi distribution, pathogenicity and biotechnological potentials. In: Developments in fungal biology and applied mycology. Springer, pp 75–97

  • Verma, P., Singh, S., & Singh, R. (2013). Seven species of Curvularia isolated from three lakes of Bhopal. Advances in Life Science and Technology, 8, 13–15.

    Google Scholar 

  • Vidyasagar, G., Hosmani, N., & Shivkumar, D. (2005). Keratinophilic fungi isolated from hospital dust and soils of public places at Gulbarga. India. Mycopathologia, 159(1), 13–21.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, K., Łobarzewski, J., & Wolski, T. (1987). Intracellular keratinase of Trichophyton gallinae. Journal of Medical and Veterinary Mycology, 25(4), 261–268.

    Article  CAS  Google Scholar 

  • Weary, P. E., & Canby, C. M. (1967). Keratinolytic activity of Trichophyton schoenleini, Trichophyton rubrum and Trichophyton mentagrophytes. Journal of Investigative Dermatology, 48(3), 240–248.

    Article  CAS  Google Scholar 

  • Weary, P. E., Canby, C. M., & Cawley, E. P. (1965). Keratinolytic activity of Microsporum canis and Microsporum gypseum. Journal of Investigative Dermatology, 44(5), 300–310.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315–322.

    Google Scholar 

  • Wind, C. A., & Polack, F. M. (1970). Keratomycosis due to Curvularia lunata. Archives of Ophthalmology, 84(5), 694–696.

    Article  CAS  Google Scholar 

  • Yanagihara, M., Kawasaki, M., Ishizaki, H., Anzawa, K., Udagawa, S.-i, Mochizuki, T., Sato, Y., Tachikawa, N., & Hanakawa, H. (2010). Tiny keratotic brown lesions on the interdigital web between the toes of a healthy man caused by Curvularia species infection and a review of cutaneous Curvularia infections. Mycoscience, 51(3), 224–233.

    Article  Google Scholar 

  • Zhang, M., Jiang, L., Li, F., Xu, Y., Lv, S., & Wang, B. (2019). Simultaneous dermatophytosis and keratomycosis caused by Trichophyton interdigitale infection: A case report and literature review. BMC Infectious Diseases, 19(1), 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shivankar Agrawal or Indira Devi.

Ethics declarations

Conflicts of interest

The authors would like to thank Department of Biotechnology, Government of India for the financial support in carrying out the research. The authors are also thankful to Dr. Chingkheihunba Akoijam for their contribution in sample collection. The authors declare that they have no conflicts of interest concerning this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Nandeibam, J. & Devi, I. Danger of exposure to keratinophilic fungi and other dermatophytes in recreational place in the northeast region of India. Aerobiologia 37, 755–766 (2021). https://doi.org/10.1007/s10453-021-09719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-021-09719-2

Keywords

Navigation