Characterisation of pollen seasons in Iceland based on long-term observations: 1988–2018

Abstract

This paper describes a long-term (1988–2018) data series from pollen monitoring in two locations in Iceland: Akureyri and Reykjavík. Our data showed a low diversity of airborne pollen present in the aeroplankton of Iceland. We showed that Betula spp. and Poaceae can be considered the main pollen allergens in Iceland. Both Betula spp. and Poaceae pollen seasons in Iceland are characterised by a late onset compared to continental Europe. Betula spp. seasons are further characterised by a longer duration and low SPI and peak values. Icelandic Poaceae seasons are shorter, but have SPI and peak values comparable to those recorded in continental Europe. We recorded no synchronisation in the intensity of pollen production between our monitoring sites in Iceland, and our data do not confirm the existence of repeatable cycle (bi- or triennial) of high and low pollen production in Betula spp. Statistically significant trends towards increasing SPI values were recorded in Reykjavík (Betula spp.) and Akureyri (Poaceae).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Asher, M. I., Montefort, S., Björkstén, B., Lai, C. K., Strachan, D. P., Weiland, S. K., & Williams, H. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet, 368(9537), 733–743. https://doi.org/10.1016/S0140-6736(06)69283-0

    Article  Google Scholar 

  2. Atkinson, M. D. (1992). Betulapendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. The Journal of Ecology, 80(4), 870. https://doi.org/10.2307/2260870

    Article  Google Scholar 

  3. Bogawski, P., Grewling, Ł, Nowak, M., Smith, M., & Jackowiak, B. (2014). Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology, 58(8), 1759–1768. https://doi.org/10.1007/s00484-013-0781-5

    Article  Google Scholar 

  4. Bunne, J., Moberg, H., Hedman, L., Andersson, M., Bjerg, A., Lundbäck, B., & Rönmark, E. (2017). Increase in allergic sensitization in schoolchildren: Two cohorts compared 10 years apart. Journal of Allergy and Clinical Immunology: In Practice, 5(2), 457-463e1. https://doi.org/10.1016/j.jaip.2016.09.025

    Article  Google Scholar 

  5. Burney, P., Luczynska, C., Chinn, S., & Jarvis, D. (1994). The european community respiratory health survey. European Respiratory Journal, 7(5), 954–960.

    CAS  Article  Google Scholar 

  6. Burr, M. L., Butland, B. K., King, S., & Vaughan-Williams, E. (1989). Changes in asthma prevalence: Two surveys 15 years apart. Archives of Disease in Childhood, 64(10), 1452–1456. https://doi.org/10.1136/adc.64.10.1452

    CAS  Article  Google Scholar 

  7. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.2307/2286407

    Article  Google Scholar 

  8. Damialis, A., Traidl-Hoffmann, C., & Treudler, R. (2019). Climate change and pollen allergies. In M. Marselle, J. Stadler, H. Korn, K. Irvine, & A. Bonn (Eds.), Biodiversity and health in the face of climate change. Springer. https://doi.org/10.1007/978-3-030-02318-8

  9. De Weger, L. A., Bergmann, K. C., Rantio-Lehtimäki, A., Dahl, A., Buters, J., Déchamp, C., Belmonte, J., Thibaudon, M., Cecchi, L., Besancenot, J. P., & Galán, C. (2013). Impact of pollen In Allergenic Pollen. Springer. https://doi.org/10.1007/978-94-007-4881-1_6

  10. Detandt, M., & Nolard, N. (2000). The fluctuations of the allergenic pollen content of the air in Brussels (1982 to 1997). Aerobiologia, 16(1), 55–61. https://doi.org/10.1023/A:1007619724282

    Article  Google Scholar 

  11. Einarsson, M. A. (1984). Climate of Iceland. In H. van Loon (Ed.), World survey of climatology climates of the oceans. Amsterdam. https://doi.org/10.1002/joc.3370050110

  12. Elven, R., Murray, D. F., Razzhivin, V. Y., & Yurtsev, B. A. (2011). Checklist of the panarctic flora (PAF). See http://nhm2.uio.no/paf

  13. Galán, C., & Thibaudon, M. (2020). Climate change, airborne pollen, and pollution. Allergy, 75(9), 14538. https://doi.org/10.1111/all.14538

    Article  Google Scholar 

  14. Hallsdóttir, M. (1999). Birch pollen abundance in Reykjavík. Iceland. Grana, 38(6), 368–373. https://doi.org/10.1080/00173130050136163

    Article  Google Scholar 

  15. Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x

    Article  Google Scholar 

  16. Hoffmann, T. M., Acar Şahin, A., Aggelidis, X., Arasi, S., Barbalace, A., Bourgoin, A., Bregu, B., Brighetti, M. A., Caeiro, E., Caglayan Sozmen, S., & Caminiti, L. (2020). “Whole” vs. “fragmented” approach to EAACI pollen season definitions: A multicenter study in six Southern European cities. Allergy, 75(7), 1659–1671. https://doi.org/10.1111/all.14153

    Article  Google Scholar 

  17. Hogda, K. A., Karlsen, S. R., Solheim, I., Tommervik, H., & Ramfjord, H. (2002). The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.2002.1027162

    Article  Google Scholar 

  18. Husson, F. (2020). FactoMineR: Multivariate exploratory data analysis and data mining, R package version 2.2. https://www.rdocumentation.org/packages/FactoMineR

  19. Jäger, S., Spieksma, F. T. M., & Nolard, N. (1991). Fluctuations and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden, and Brussels. Grana, 30(2), 309–312. https://doi.org/10.1080/00173139109431985

    Article  Google Scholar 

  20. Jato, V., Rodríguez-Rajo, F. J., Seijo, M. C., & Aira, M. J. (2009). Poaceae pollen in Galicia (N. W Spain) Characterisation and recent trends in atmospheric pollen season. International Journal of Biometeorology, 53(4), 333–344. https://doi.org/10.1007/s00484-009-0220-9

    CAS  Article  Google Scholar 

  21. Karlsdóttir, L., Thórsson, A. T., Hallsdóttir, M., Sigurgeirsson, A., Eysteinsson, T., & Anamthawat-Jónsson, K. (2007). Differentiating pollen of Betula species from Iceland. Grana, 46(2), 78–84. https://doi.org/10.1080/00173130701237832

    Article  Google Scholar 

  22. Karlsen, S. R., Ramfjord, H., Høgda, K. A., Johansen, B., Danks, F. S., & Brobakk, T. E. (2009). A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia, 25(1), 15–25. https://doi.org/10.1007/s10453-008-9105-3

    Article  Google Scholar 

  23. Kasprzyk, I. (2006). Comparative study of seasonal and intradiurnal variation of airborne herbaceous pollen in urban and rural areas. Aerobiologia, 22(3), 185–195. https://doi.org/10.1007/s10453-006-9031-1

    Article  Google Scholar 

  24. Kassanbra, A. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package version 1.0.7. Retrieved August 31, 2020 from https://www.rdocumentation.org/packages/factoextra

  25. Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5925–5930. https://doi.org/10.1073/pnas.0608361104

    CAS  Article  Google Scholar 

  26. Kubik-Komar, A., Piotrowska-Weryszko, K., Weryszko-Chmielewska, E., Kuna-Broniowska, I., Chłopek, K., Myszkowska, D., et al. (2019). A study on the spatial and temporal variability in airborne Betula pollen concentration in five cities in Poland using multivariate analyses. Science of the Total Environment, 660, 1070–1078. https://doi.org/10.1016/j.scitotenv.2019.01.098

    CAS  Article  Google Scholar 

  27. Magnússon, S., Manússon, B., Elmarsdóttir, Á., Metúsalemsson, S., & Hansen, H. (2016). Vistgerðir á Íslandi - Vistgerðir á landi. Fjölrit Náttúrufræðistofnunar, 54, 17–169.

    Google Scholar 

  28. Malkiewicz, M., Drzeniecka-Osiadacz, A., & Krynicka, J. (2016). The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland). Science of the Total Environment, 573, 740–750. https://doi.org/10.1016/j.scitotenv.2016.08.103

    CAS  Article  Google Scholar 

  29. Malkiewicz, M., & Klaczak, K. (2011). Analysis of the grass (Poaceae L.) pollen seasons in Wrocław,2003–2010. Acta Agrobotanica, 64(4), 59–66.

    Article  Google Scholar 

  30. Mercuri, A., Torri, P., Fornaciari, R., & Florenzano, A. (2016). Plant responses to climate change: The case study of Betulaceae and Poaceae pollen seasons (Northern Italy, Vignola, Emilia-Romagna). Plants, 5(4), 42. https://doi.org/10.3390/plants5040042

    Article  Google Scholar 

  31. Myszkowska, D. (2013). Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series. Aerobiologia, 29(1), 31–44. https://doi.org/10.1007/s10453-012-9260-4

    Article  Google Scholar 

  32. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182. https://doi.org/10.1080/00173138109427661

    Article  Google Scholar 

  33. Nowosad, J. (2020). pollen v0.72.0—Analysis of aerobiological data. Retrieved August 25, 2020 fromhttps://nowosad.github.io/pollen/

  34. Pawankar, R., Canonica, G., Holgate, S., & Lockey, R. (Eds.). (2013). World Allergy Organization (WAO) white book on allergy. World Allergy Organization. https://www.worldallergy.org/UserFiles/file/WAO-White-Book-on-Allergy_web.pdf

  35. Pedersen, T. (2020). ggplot2, R package version 3.3.2. https://www.rdocumentation.org/packages/ggplot2

  36. Peel, M., Finlayson, B., & McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439–473.

    Google Scholar 

  37. Piotrowska, K. (2012). Meteorological factors and airborne Rumex L. pollen concentration in Lublin. Acta Agrobotanica, 65(1), 45–52. https://doi.org/10.5586/aa.2012.042

    Article  Google Scholar 

  38. Puc, M., & Puc, M. (2004). Allergenic airborne grass pollen in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 11(2), 237–244.

    Google Scholar 

  39. Puc, M., & Wolski, T. (2013). Forecasting of the selected features of Poaceae (R. Br.) Barnh., Artemisia L. and Ambrosia L. pollen season in Szczecin, north-western Poland, using Gumbel’s distribution. Annals of Agricultural and Environmental Medicine, 20(1), 36–47.

  40. R Development Core Team. (2011). R: A Language and environment for statistical computing, vol. 55, pp. 275–286.

  41. Ramfjord, H. (1991). Outdoor appearance of aeroallergens in Norway. Grana, 30(1), 91–97. https://doi.org/10.1080/00173139109427778

    Article  Google Scholar 

  42. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265. https://doi.org/10.1023/A:1021321615254

    Article  Google Scholar 

  43. Rodríguez-Rajo, F. J., Frenguelli, G., & Jato, M. V. (2003). Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47(3), 117–125. https://doi.org/10.1007/s00484-002-0153-z

    Article  Google Scholar 

  44. Sedghy, F., Varasteh, A.-R., Sankian, M., & Moghadam, M. (2018). Interaction between air pollutants and pollen grains: the role on the rising trend in allergy. Reports of biochemistry & molecular biology (vol. 6). Varastegan Institute for Medical Sciences. Retrieved September 21, 2020 from www.RBMB.net

  45. Severova, E., & Volkova, O. (2017). Variations and trends of Betula pollen seasons in Moscow (Russia) in relation to meteorological parameters. Aerobiologia, 33(2), 253–264. https://doi.org/10.1007/s10453-016-9460-4

    Article  Google Scholar 

  46. Skjøth, C. A., Baker, P., Sadyś, M., & Adams-Groom, B. (2015). Pollen from alder (Alnus sp.), birch (Betula sp.) and oak (Quercus sp.) in the UK originate from small woodlands. Urban Climate, 14, 414–428. https://doi.org/10.1016/j.uclim.2014.09.007

    Article  Google Scholar 

  47. Spieksma, F. T. M., Corden, J. M., Detandt, M., Millington, W. M., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19(3–4), 171–184. https://doi.org/10.1023/B:AERO.0000006528.37447.15

    Article  Google Scholar 

  48. Spieksma, F. T. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34(1), 51–57. https://doi.org/10.1080/00173139509429033

    Article  Google Scholar 

  49. Spieksma, F. T. M., & Nikkels, A. H. (1998). Airborne grass pollen in Leiden, The Netherlands: Annual variations and trends in quantities and season starts over 26 years. Aerobiologia, 14(4), 347–358. https://doi.org/10.1007/bf02694304

    Article  Google Scholar 

  50. Vandenplas, O., DʼAlpaos, V., & Van Brussel, P. (2008). Rhinitis and its impact on work. Current Opinion in Allergy and Clinical Immunology, 8(2), 145–149. https://doi.org/10.1097/ACI.0b013e3282f63d92

  51. Walter, H., & Lieth, W. (1967). Klimadiagramm-Weltatlas. G. Fischer Verlag.

  52. Wasowicz, P. (2020). Annotated checklist of vascular plants of Iceland. Fjölrit Náttúrufræðistofnunar, 57, 1–193. https://doi.org/10.33112/1027-832X.57

    Article  Google Scholar 

  53. Wasowicz, P., Pasierbiński, A., Przedpelska-Wasowicz, E. M., & Kristinsson, H. (2014). Distribution patterns in the native vascular flora of Iceland. PLoS ONE, 9(7), e102916. https://doi.org/10.1371/journal.pone.0102916

    Article  Google Scholar 

  54. Wasowicz, P., Przedpelska-Wasowicz, E. M., & Kristinsson, H. (2013). Alien vascular plants in Iceland: Diversity, spatial patterns, temporal trends, and the impact of climate change. Flora—Morphology, Distribution, Functional Ecology of Plants, 208(10–12), 648–673. https://doi.org/10.1016/j.flora.2013.09.009

    Article  Google Scholar 

  55. Ziska, L. H., Makra, L., Harry, S. K., Bruffaerts, N., Hendrickx, M., Coates, A., Thibaudon, M., Oliver, G., Damialis, A., & Charalampopoulos, A. (2019). Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. The Lancet Planetary Health, 3(3), e124–e131. https://doi.org/10.1016/S2542-5196(19)30015-4

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ewa Maria Przedpelska-Wasowicz.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Przedpelska-Wasowicz, E.M., Wasowicz, P., Áskelsdóttir, A.Ó. et al. Characterisation of pollen seasons in Iceland based on long-term observations: 1988–2018. Aerobiologia (2021). https://doi.org/10.1007/s10453-021-09701-y

Download citation

Keywords

  • Poaceae
  • Betulaceae
  • Pollen season
  • Iceland
  • Pollinosis
  • Birch pollen season
  • Grass pollen season