Skip to main content

Spatial distribution of fungi from the analysis of aerobiological data with a gamma function

Abstract

Fungi are an important component of ecosystems. Some fungi are widely distributed, while others are limited to certain habitats. Studies based on airborne fungal spores can help to know the geographical distribution of fungi in the territory. Our aim was to show that a gamma probability density function (gpdf) based on a database of 20 airborne fungal spore taxa concentrations in eight localities of Catalonia (NE Spain) for a period of 20 years was a useful tool to map the distribution of these taxa in this region, as well as to establish a general classification on their sporulation through the alpha parameter of the validated model. This allows a more efficient study of the atmospheric dynamics of the different taxa, since the number of taxa is reduced to a representative taxon for each of the categories of the generic classification. In general, the results obtained confirmed that the scale parameter of the gamma distribution changes from year to year, depending on the meteorological conditions, while the shape parameter remains fairly stable. At the temporal scale, airborne fungal spores of Agrocybe sp. showed the highest stability; at the spatial scale, Cladosporium sp. showed the highest stability. Regarding localities, Girona was the station with greater interannual variation, while Barcelona and Vielha showed the lowest. In addition, the results obtained allowed a non-subjective classification of these taxa in five groups, based on the gamma (shape) parameter. The taxa Alternaria sp., Cladosporium sp., Ganoderma sp., Pleospora sp., Leptosphaeria sp., Aspergillus sp.-Penicillium sp. were cosmopolitan and showed a similar behavior across the whole study area, with any of them possible candidates for used in predictive models; airborne fungal spores of Agrocybe sp., Arthrinium sp., Epicoccum sp., Drechslera sp.–Helminthosporium sp., Pithomyces sp., Thelephoraceae, Stemphylium sp., Xylariaceae can be used as meteorological indicators and Agaricus sp., Coprinaceae sp., Torula sp. can be used as indicators of anthropogenic activities. The results obtained could be used to reduce the number of spore taxa analyzed and subsequently develop generic predictive models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

Authors declare that if required, they can send their datasets as supplementary material.

References

  1. Aboulaich, N., Achmakh, L., Bouziane, H., Trigo, M. M., Recio, M., Kadiri, M., et al. (2013). Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). International Journal of Biometeorology, 57(2), 197–205.

    Article  Google Scholar 

  2. Allue Andrade, J.L. (1990). Phytoclimatic atlas of Spain. Taxonomies. Madrid, España: Instituto Nacional de Investigaciones Agrarias, Ministerio de Agricultura, Pesca y Alimentación.

  3. Almaguer, M., Aira, M. J., Rodríguez-Rajo, F. J., & Rojas, T. I. (2013). Study of airborne fungus spores by viable and non-viable methods in Havana, Cuba. Grana, 52(4), 289–298.

    Article  Google Scholar 

  4. Andersen, B., Frisvad, J. C., Søndergaard, I., Rasmussen, I. S., & Larsen, L. S. (2011). Associations between fungal species and water-damaged building materials. Applied and Environmental Microbiology, 77(12), 4180–4188.

    CAS  Article  Google Scholar 

  5. Astray, G., Rodríguez-Rajo, F. J., Ferreiro-Lage, J. A., Fernández-González, M., Jato, V., & Mejuto, J. C. (2010). The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. Journal of Environmental Monitoring, 12(11), 2145–2152.

    CAS  Article  Google Scholar 

  6. Belmonte, J., & Canela, M. A. (2002). Modelling aerobiological time series. Application to Urticaceae. Aerobiologia, 18(3–4), 287–295.

    Article  Google Scholar 

  7. Belmonte, J., & Canela, M.A. (2003). Modeling aerobiological pollen data with the gamma distribution. Availabe at http://lap.uab.cat/aerobiologia/general/pdf/altres/TESAGamma.pdf.

  8. Belmonte, J., Vendrell, M., Roure, J. M., Vidal, J., Botey, J., & Cadahía, À. (2000). Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia, 16(1), 93–99.

    Article  Google Scholar 

  9. Belmonte, J., Alarcón, M., Avila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology, 52 (7), 675–687.

  10. Boddy, L., Büntgen, U., Egli, S., Gange, A. C., Heegaard, E., Kirk, P. M., et al. (2014). Climate variation effects on fungal fruiting. Fungal Ecology, 10, 20–33.

    Article  Google Scholar 

  11. Burch, M., & Levetin, E. (2002). Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46(3), 107–117.

    CAS  Article  Google Scholar 

  12. Carlile, M. J., Watkinson, S. C., & Gooday, G. W. (2001). 4 - Spores, dormancy and dispersal. In M. J. Carlile, S. C. Watkinson, & G. W. Gooday (Eds.), The Fungi (2nd ed., pp. 185–243). London: Academic Press.

    Chapter  Google Scholar 

  13. Chuine, I., & Belmonte, J. (2004). Improving prophylaxis for pollen allergies: predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana, 43(2), 65–80.

    Article  Google Scholar 

  14. Codina, R., Fox, R. W., Lockey, R. F., DeMarco, P., & Bagg, A. (2008). Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. Journal of Investigational Allergology and Clinical Immunology, 18(3), 156.

    CAS  Google Scholar 

  15. Comtois, P. (2000). The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologia, 16(2), 171–176.

    Article  Google Scholar 

  16. Crous, P. W., & Groenewald, J. Z. (2013). A phylogenetic re-evaluation of Arthrinium. IMA Fungus, 4(1), 133–154.

    Article  Google Scholar 

  17. Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015). Long-term trends in airborne fungal-spore concentrations: a comparison with pollen. Fungal Ecology, 13, 150–156.

    Article  Google Scholar 

  18. Dara, F. (2013). Forecasting daily Urticaceae pollen count by artificial neural networks. International Journal of Innovative Research and Development, 2(10), 63–71.

    Google Scholar 

  19. Departament d’Agricultura, Ramaderia, Pesca i Alimentació, Secretaria General, and Estudis i Prospectiva agrària i Alimentària (2014). Superfícies, rendimients i produccions comarcals dels conreus agrícoles. Any 2014 [online]. Available from: http://agricultura.gencat.cat/web/.content/de_departament/de02_estadistiques_observatoris/02_estructura_i_produccio/02_estadistiques_agricoles/01_llencols_definitius/fitxers_estatics/produccions_comarcals/Produccions_comarcals_web_2014.pdf [Accessed 03 Mar 20020.

  20. Díaz, A. H., Sabariego, S. R., Gutiérrez, M. B., & Cervigón, P. M. (2006). Study of airborne fungal spores in Madrid, Spain. Aerobiologia, 22(2), 133.

    Article  Google Scholar 

  21. Domsch, K. H., Gams, W., & Anderson, T. H. (2007). Compendium of soil fungi (2nd ed.). Eching: IHW Verlag.

    Google Scholar 

  22. Fernández-Llamazares, Á., Belmonte, J., Delgado, R., & De Linares, C. (2014). A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). International Journal of Biometeorology, 58(3), 371–382.

    Article  Google Scholar 

  23. Fernández-Rodríguez, S., Skjøth, C. A., Tormo-Molina, R., Brandao, R., Caeiro, E., Silva-Palacios, I., et al. (2014). Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. International Journal of Biometeorology, 58(3), 337–348.

    Article  Google Scholar 

  24. Fernandez-Rodriguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C.A., Maya-Manzano, J.M., Silva-Palacios, I., Gonzalo-Garijo, A. (2015). Potential sources of airborne Alternaria spp. Spores in South-west Spain. Science of the Total Environment, 15(533), 165–176

  25. Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., Fernandez-González, D., Frenguelli, G., Gehrig, R., Isard, S., Levetin, E., Li, D.W., Mandrioli, P., Rogers, C.A., Thibaudon, M., Sauliene, I., Skjoth, C., Smith, M., & Sofiev, M. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33 (3), 293–295.

  26. Galán, C., Cariñanos, P., Alcázar, P., & Dominguez, E. (2007). Manual de calidad y gestión de la Red Española de Aerobiología. Cordoba, España: Universidad de Córdoba.

    Google Scholar 

  27. Grewling, Ł, Bogawski, P., Kryza, M., Magyar, D., Sikoparija, B., Skjøth, C. A., et al. (2019). Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environmental Pollution, 254, 112948.

    CAS  Article  Google Scholar 

  28. Grinn-Gofroń, A., & Bosiacka, B. (2015). Effects of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia, 31(1), 63–72.

    Article  Google Scholar 

  29. Grinn-Gofroń, A., & Strzelczak, A. (2008a). Artificial neural network models of relationships between Cladosporium spores and meteorological factors in Szczecin (Poland). Grana, 47(4), 305–315.

    Article  Google Scholar 

  30. Grinn-Gofroń, A., & Strzelczak, A. (2008b). Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland). International Journal of Biometeorology, 52(8), 859–868.

    Article  Google Scholar 

  31. Hasnain, S. M., Akhter, T., & Waqar, M. A. (2012). Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. Journal of Environmental Monitoring, 14(3), 1006.

    CAS  Article  Google Scholar 

  32. Hasnain, S. M., Fatima, K., Al-Frayh, A., & Al-Sedairy, S. T. (2005). One-Year pollen and spore calendars of Saudi Arabia Al-Khobar. Abha and Hofuf. Aerobiologia, 21(3–4), 241–247.

    Article  Google Scholar 

  33. Hirst, J. M. (1952). An Automatic Volumetric Spore Trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  34. Ho, H. M., Rao, C. Y., Hsu, H. H., Chiu, Y. H., Liu, C. M., & Chao, H. J. (2005). Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmospheric Environment, 39(32), 5839–5850.

    CAS  Article  Google Scholar 

  35. Howard, L. E., & Levetin, E. (2014). Ambrosia pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development. Annals of Allergy, Asthma & Immunology, 113(6), 641–646.

    Article  Google Scholar 

  36. Iglesias, I., Rodriguez-Rajo, F. J., & Méndez, J. (2007). Behavior of Platanus hispanica pollen, an important spring aeroallergen in northwestern Spain. Journal of Investigational Allergology and Clinical Immunology, 17(3), 145.

    CAS  Google Scholar 

  37. Institut d’Estadística de Catalunya, I. (2014). Anuari estadístic de Catalunya. Usos del sòl. Comarques, àmbits i províncies [online]. Available from: http://www.idescat.cat/pub/?id=aec&n=202 [Accessed 3 Mar 2020].

  38. Izquierdo, R., Belmonte, J., Avila, A., Alarcón, M., Cuevas, E., & Alonso-Pérez, S. (2011). Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). International Journal of Biometeorology, 55(1), 67–85.

    Article  Google Scholar 

  39. Kasprzyk, I., Rzepowska, B., & Wasylów, M. (2004). Fungal spores in the atmosphere of Rzeszow (south-east Poland). Annals of Agricultural and Environmental Medicine, 11(2), 285–289.

    Google Scholar 

  40. Kasprzyk, I., & Walanus, A. (2014). Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics. Aerobiologia, 30(4), 369–383.

    CAS  Article  Google Scholar 

  41. Kerrigan, R. W., Carvalho, D. B., Horgen, P. A., & Anderson, J. B. (1998). The indigenous coastal Californian population of the mushroom Agaricus bisporus, a cultivated species, may be at risk of extinction. Molecular Ecology, 7(1), 35–45.

    Article  Google Scholar 

  42. Kuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. (2007). Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 208(2–4), 177–188.

    Article  Google Scholar 

  43. Li, D. W., & Kendrick, B. (1995). A year-round outdoor aeromycological study in Waterloo, Ontario, Canada. Grana, 34(3), 199–207.

    Article  Google Scholar 

  44. Limpert, E., Burke, J., Galán, C., Trigo, M. M., West, J. S., & Stahel, W. A. (2008). Data, not only in aerobiology: how normal is the normal distribution? Aerobiologia, 24(3), 121–124.

    Article  Google Scholar 

  45. Mallo, A. C., Nitiu, D. S., & Sambeth, M. C. G. (2011). Airborne fungal spore content in the atmosphere of the city of La Plata, Argentina. Aerobiologia, 27(1), 77–84.

    Article  Google Scholar 

  46. Malysheva, E. F., & Kiyashko, A. A. (2011). Contribution to the study of Agrocybe pediades complex (Agaricales) in Russia based on nrITS sequences. Mycologia Balcanica, 8(2), 115–124.

    Google Scholar 

  47. Matyasovszky, I., & Makra, L. (2011). Autoregressive modelling of daily ragweed pollen concentrations for Szeged in Hungary. Theoretical and Applied Climatology, 104(1–2), 277–283.

    Article  Google Scholar 

  48. McMullin, D. R., Sumarah, M. K., & Miller, J. D. (2012). Chaetoglobosins and Azaphilones produced by Canadian strains of Chaetomium globosum isolated from the indoor environment. Mycotoxin Research, 29(1), 47–54.

    Article  CAS  Google Scholar 

  49. Morales, J., González-Minero, F. J., Carrasco, M., Ogalla, V. M., & Candau, P. (2006). Airborne basidiospores in the atmosphere of Seville (South Spain). Aerobiologia, 22(2), 125.

    Article  Google Scholar 

  50. Moseholm, L., Weeke, E. R., & Petersen, B. N. (1987). Forecast of pollen concentrations of Poaceae (Grasses) in the air by time series analysis. Pollen et spores, 29(2–3), 305–321.

    Google Scholar 

  51. Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53(1), 61–73.

    CAS  Article  Google Scholar 

  52. Oliveira, M., Ribeiro, H., Delgado, L., Fonseca, J., Gastel-Branco, M. G., & Abreu, I. (2010). Outdoor allergenic fungal spores: comparison between an urban and a rural area in Northern Portugal. Journal of investigational allergology & clinical immunology, 20(2), 117.

    CAS  Google Scholar 

  53. Orlandi, F., Sgromo, C., Bonofiglio, T., Ruga, L., Romano, B., & Fornaciari, M. (2010). Yield modelling in a Mediterranean species utilizing cause–effect relationships between temperature forcing and biological processes. Scientia Horticulturae, 123(3), 412–417.

    Article  Google Scholar 

  54. Prank, M., Chapman, D. S., Bullock, J. M., Belmonte, J., Berger, U., Dahl, A., et al. (2013). An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology, 182–183, 43–53.

    Article  Google Scholar 

  55. Puc, M. (2012). Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). International Journal of Biometeorology, 56(2), 395–401.

    Article  Google Scholar 

  56. Ramírez-López, I., Villegas Ríos, M., & Cano-Santana, Z. (2013). Phenotypic plasticity of the basidiomata of Thelephora sp. (Thelephoraceae) in tropical forest habitats. Revista de Biología Tropical, 61 (1), 343–350.

  57. Recio, M., Trigo, M. M., Docampo, S., Melgar, M., García-Sánchez, J., Bootello, L., & Cabezudo, B. (2012). Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. International Journal of Biometeorology, 56(6), 983–991.

    Article  Google Scholar 

  58. Rodríguez-Rajo, F. J., Valencia-Barrera, R. M., Vega-Maray, A. M., Suarez, F. J., Fernandez-Gonzalez, D., & Jato, V. (2006). Prediction of airborne Alnus pollen concentration by using ARIMA models. Annals of Agricultural and Environmental Medicine, 13(1), 25.

    Google Scholar 

  59. Rossi, V., Bugiani, R., Giosué, S., & Natali, P. (2005). Patterns of airborne conidia of Stemphylium vesicarium, the causal agent of brown spot disease of pears, in relation to weather conditions. Aerobiologia, 21(3–4), 203–216.

    Article  Google Scholar 

  60. Rúa-Giraldo, A.L. (2013). Aerobiología de las esporas de Pleosporales en ambientes intra y extradomiciliarios de Barcelona. Aplicación a la clínica en población alérgica. info:eu-repo/semantics/doctoralThesis. Universitat Autònoma de Barcelona, Barcelona.

  61. Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.

  62. Sadyś, M., Skjøth, C. A., & Kennedy, R. (2016a). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.

    Article  CAS  Google Scholar 

  63. Sadyś, M., Skjøth, C. A., & Kennedy, R. (2016b). Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations. International Journal of Biometeorology, 60(4), 489–498.

    Article  Google Scholar 

  64. Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., García-Mozo, H., Gehrig, R., Grewling, L., Halley, J.M., Hogda, K.-A., Jäger, S., Karatzas, K., Karlsen, S.-R., Koch, E., Pauling, A., Peel, R., Sikoparija, B., Smith, M., Galán, C., Thibaudon, M., Vokou, D., & De Weger, L.A. (2013). Monitoring, modelling and forecasting of the pollen season. In: M. Sofiev and K.-C. Bergmann, eds. Allergenic pollen. New York, London: Springer Netherlands, 71–126.

  65. Shumway, R.H., & Stoffer, D.S. (2001). Time Series Analysis and Its Applications. London: Springer.

  66. Skjoth, C. A., Damialis, A., Belmonte, J., De Linares, C., Fernandez-Rodrıguez, S., Grinn-Gofron, A., et al. (2016). Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia, 32, 3–22.

    Article  Google Scholar 

  67. Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London. United Kingdom. Clinical & Experimental Allergy, 35(10), 1400–1406.

    CAS  Article  Google Scholar 

  68. Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50(4), 233–242.

    Article  Google Scholar 

  69. Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62(3), 323–332.

    Article  Google Scholar 

  70. Stępalska, D., & Wołek, J. (2005). Variation in fungal spore concentrations of selected taxa associated. Aerobiologia, 21(1), 43–52.

    Article  Google Scholar 

  71. Vélez-Pereira, A.M. (2017). Modelación espacio-temporal de polen y esporas de hongos aerovagantes de Catalunya (1994–2015). Ph.D. Thesis. Universitat Autònoma de Barcelona, Barcelona, España.

  72. Vélez-Pereira, A. M., De Linares, C., Canela, M. A., & Belmonte, J. (2019). Logistic regression models for predicting daily airborne Alternaria and Cladosporium concentration levels in Catalonia (NE Spain). International Journal of Biometeorology, 63, 1541–1553. https://doi.org/10.1007/s00484-019-01767-1.

    Article  Google Scholar 

  73. Vélez-Pereira, A. M., De Linares, C., Delgado, R., & Belmonte, J. (2016). Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia, 32(1), 23–37.

    Article  Google Scholar 

  74. Whalley, A. J. S. (1985). Xylariaceae: some ecological considerations, Sydowia. Sydowia, Annales Mycologici Series, II, 38.

    Google Scholar 

  75. Whalley, A. J. S. (1996). The Xylariaceous way of life. Mycological Research, 100(8), 897–922.

    Article  Google Scholar 

  76. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7(4), e34076.

    CAS  Article  Google Scholar 

  77. Zink, K., Vogel, H., Vogel, B., Magyar, D., & Kottmeier, C. (2012). Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. International Journal of Biometeorology, 56 (4), 669–680.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Technology through the projects ‘‘CGL2012-39523-C02-01/CLI’’ and ‘‘CTM2017-86565-C2-1-O’’ and by Administrative Department of Science, Technology and Innovation-COLCIENCIAS (Colombia) through the Doctoral fellowship to Andrés M. Vélez-Pereira. The authors wish to thank also the entities and projects that made it possible to construct the database used in this study: Laboratorios LETI S.A.; Servei Meteorològic de Catalunya; Diputacions de Barcelona, Girona and Tarragona; SCAIC; SEAIC; Stallergenes Iberica; J. Uriach y Cia; European Commission for ‘‘ENV4-CT98-0755′’; Spanish Ministry of Science and Technology I+D+I for ‘‘AMB97-0457-CO7-021,’’ REN2001-10659-CO3-01′’, ‘‘BOS2002-03474′,’ ‘‘CGL2004-21166-E’,’ ‘‘CGL2005-07543/CLI’’, ‘‘GGL2006-12648-CO3-02′’, ‘‘CGL2009-11205′’, FEDER ‘‘A way to build Europe,’’ and CONSOLIDER CSD 2007_00067 GRACCIE; and Catalan Government AGAUR for ‘‘2005SGR00519′’, ‘‘2009SGR1102′’, “2014SGR1274” and “2017SGR1692”. This work is contributing to the ICTA 'Unit of Excellence' (MinECo, MDM2015-0552). To Agencia Nacional de Investigación y Desarrollo – ANID from Chile, for the project grant EcoClimatico LAB “R-17A10002”, RECCA “R-19F10004”, “PR 730 R20F0002” and El Gobierno Regional de Aysén for the project grant FILTRO “BIP 40021825-0”. The authors are grateful to Zoe Fleming for English edition and to reviewers, who with their comments contributed to improvement of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Concepción De Linares.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

For this type of study, an approval of an Ethical Committee is not necessary.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vélez-Pereira, A.M., De Linares, C., Canela, M. et al. Spatial distribution of fungi from the analysis of aerobiological data with a gamma function. Aerobiologia 37, 461–477 (2021). https://doi.org/10.1007/s10453-021-09696-6

Download citation

Keywords

  • Fungal spores
  • Gamma function
  • Fungal taxa distribution