Abstract
Microbial organisms can cause huge crises in decorated caves, as seen in emblematic sites such as Lascaux cave. The preservation of such sites involves understanding the healthy microbial behavior of caves before the damage occurs. Indeed, knowledge of normal cave behavior is a prerequisite to identifying potential imbalance. This study seeks to determine whether models of aerobiological behavior could be identified in several caves of different sizes, ranging from rock shelters to large caves that are open or closed to the public. Aerial rates of fungi and bacteria were monitored over 3 years in nine sites in Dordogne (France). This study revealed that in a context of caves where public visits were carefully managed, fungal and bacterial rates were more affected by the size of the caves than by the opening of sites to the visitors. The study confirmed that large caves can generally be described as “self-purifying caves” as they were strongly affected by the exterior environment at their entry but much less so at locations further inside the cave, while small caves can be described as “non-self-purifying caves” since they were strongly affected by the exterior environment throughout their whole length. The results also highlighted the difficulty to determine a limit value of microbial rates valid for all caves because of the specificities of each one.
Similar content being viewed by others
References
Adetutu, E. M., Thorpe, K., Bourne, S., Cao, X., Shahsavari, E., Kirby, G., et al. (2011). Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia, 103(5), 959–968. https://doi.org/10.3852/10-256.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
Angelova, R. G., & Groudeva, V. I. (2014). Microbial diversity on the rock paintings in Magoura Cave, Bulgaria. Journal of BioScience and Biotechnology (Special Edition) 51–54.
Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8(1), 69–80. https://doi.org/10.1016/0169-2070(92)90008-W.
Bastian, F., Alabouvette, C., & Saiz-Jimenez, C. (2009). The impact of arthropods on fungal community structure in Lascaux Cave. Journal of Applied Microbiology, 106(5), 1456–1462. https://doi.org/10.1111/j.1365-2672.2008.04121.x.
Bastian, F., Jurado, V., Nováková, A., Alabouvette, C., & Saiz-Jimenez, C. (2010). The microbiology of Lascaux cave. Microbiology, 156(3), 644–652. https://doi.org/10.1099/mic.0.036160-0.
Bercea, S., Năstase-Bucur, R., Mirea, I. C., Măntoiu, D. Ş., Kenesz, M., Petculescu, A., et al. (2018). Novel approach to microbiological air monitoring in show caves. Aerobiologia, 34(4), 445–468. https://doi.org/10.1007/s10453-018-9523-9.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., et al. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008.
Booth, J. G., Casella, G., Friedl, H., & Hobert, J. P. (2003). Negative binomial loglinear mixed models. Statistical Modelling, 3(3), 179–191. https://doi.org/10.1191/1471082X03st058oa.
Bretz, F., Hothorn, T., & Westfall, P. (2016). Multiple comparisons using R. Boca Raton: CRC Press.
Chambers, J. M., & Hastie, T. J. (1992). Linear models. In J. M. Chambers & T. J. Hastie (Eds.), Statistical models in S. Wadsworth & Brooks/Cole: Pacific Grove.
Cigna, A. A. (1993). Environmental management of tourist caves. Environmental Geology, 21(3), 173–180. https://doi.org/10.1007/BF00775302.
David, K., & Hadley, W. (2013). ggmap: Spatial visualization with ggplot2. The R Journal, 5(1), 144–161. https://doi.org/10.32614/RJ-2013-014.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge: Cambridge University Press.
Docampo, S., Trigo, M., Recio, M., Melgar, M., García-Sánchez, J., & Cabezudo, B. (2011). Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): Diversity and origin. Science of the Total Environment, 409(4), 835–843. https://doi.org/10.1016/j.scitotenv.2010.10.048.
Domsch, K. H., Gams, W., & Anderson, T.-H. (1980). Compendium of soil fungi (Vol. 2). London: Academic Press Ltd.
Dredge, J., Fairchild, I. J., Harrison, R. M., Fernandez-Cortes, A., Sanchez-Moral, S., Jurado, V., et al. (2013). Cave aerosols: Distribution and contribution to speleothem geochemistry. Quaternary Science Reviews, 63, 23–41. https://doi.org/10.1016/j.quascirev.2012.11.016.
Dupont, J., Jacquet, C., Dennetière, B., Lacoste, S., Bousta, F., Orial, G., et al. (2007). Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia, 99(4), 526–533. https://doi.org/10.3852/mycologia.99.4.526.
Edel, V., Steinberg, C., Gautheron, N., Recorbet, G., & Alabouvette, C. (2001). Genetic diversity of Fusarium oxysporum populations isolated from different soils in France. FEMS Microbiology Ecology, 36, 61–71. https://doi.org/10.1016/S0168-6496(01)00119-2.
Fernandez-Cortes, A., Cuezva, S., Sanchez-Moral, S., Cañaveras, J. C., Porca, E., Jurado, V., et al. (2011). Detection of human-induced environmental disturbances in a show cave. Environmental Science and Pollution Research, 18(6), 1037–1045. https://doi.org/10.1007/s11356-011-0513-5.
Fox, J. (2015). Applied regression analysis and generalized linear models. Thousand Oaks: Sage Publications.
Garcia-Anton, E., Cuezva, S., Jurado, V., Porca, E., Miller, A. Z., Fernandez-Cortes, A., et al. (2013). Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environmental Science and Pollution Research International, 21(1), 473–484. https://doi.org/10.1007/s11356-013-1915-3.
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x.
Griffin, D. W., Gray, M. A., Lyles, M. B., & Northup, D. E. (2014). The transport of nonindigenous microorganisms into caves by human visitation: A case study at Carlsbad Caverns National Park. Geomicrobiology Journal, 31(3), 175–185. https://doi.org/10.1080/01490451.2013.815294.
Houillon, N., Lastennet, R., Denis, A., Malaurent, P., Minvielle, S., & Peyraube, N. (2017). Assessing cave internal aerology in understanding carbon dioxide (CO2) dynamics: implications on calcite mass variation on the wall of Lascaux Cave (France). Environmental Earth Sciences, 76(4), 170. https://doi.org/10.1007/s12665-017-6498-8.
Husson, F., Lê, S., & Pagès, J. (2017). Exploratory multivariate analysis by example using R. Boca Raton: CRC Press.
Jurado, V., Fernandez-Cortes, A., Cuezva, S., Laiz, L., Cañaveras, J. C., Sanchez-Moral, S., et al. (2009). The fungal colonisation of rock-art caves: Experimental evidence. Naturwissenschaften, 96(9), 1027–1034. https://doi.org/10.1007/s00114-009-0561-6.
Jurado, V., Sanchez-Moral, S., & Saiz-Jimenez, C. (2008). Entomogenous fungi and the conservation of the cultural heritage: A review. International Biodeterioration and Biodegradation, 62(4), 325–330. https://doi.org/10.1016/j.ibiod.2008.05.002.
Kuzmina, L., Galimzianova, N., Abdullin, S., & Ryabova, A. (2012). Microbiota of the Kinderlinskaya cave (South Urals, Russia). Microbiology, 81(2), 251–258. https://doi.org/10.1134/S0026261712010109.
Leplat, J., François, A., Touron, S., Galant, P., & Bousta, F. (2019). Aerobiological behavior of Paleolithic decorated caves: A comparative study of five caves in the Gard Department (France). Aerobiologia, 35, 105–124. https://doi.org/10.1007/s10453-018-9546-2.
Leroi-Gourhan, A. (1984). L’art des cavernes: atlas des grottes ornées paléolithiques françaises. Paris: Imprimerie Nationale.
Man, B., Wang, H., Yun, Y., Xiang, X., Wang, R., Duan, Y., et al. (2018). Diversity of fungal communities in Heshang Cave of central China revealed by mycobiome-sequencing. Frontiers in Microbiology, 9, 1400. https://doi.org/10.3389/fmicb.2018.01400.
Martin-Sanchez, P. M., Jurado, V., Porca, E., Bastian, F., Lacanette, D., Alabouvette, C., et al. (2014). Airborne microorganisms in Lascaux Cave (France). International Journal of Speleology, 43(3), 295–303. https://doi.org/10.5038/1827-806X.43.3.6.
Mulec, J., Oarga-Mulec, A., Šturm, S., Tomazin, R., & Matos, T. (2017). Spacio-temporal distribution and tourist impact on airborne bacteria in a cave (Škocjan Caves, Slovenia). Diversity, 9(3), 28. https://doi.org/10.3390/d9030028.
Ogórek, R. (2018). Speleomycology of air in Demänovská Cave of Liberty (Slovakia) and new airborne species for fungal sites. Journal of Cave and Karst Studies, 80(3), 153–160. https://doi.org/10.4311/2018mb0104.
Ogórek, R., Lejman, A., & Matkowski, K. (2014). Influence of the external environment on airborne fungi isolated from a cave. Polish Journal of Environmental Studies, 23(2), 435–440.
Out, B., Boyle, S., & Cheeptham, N. (2016). Identification of fungi from soil in the Nakimu caves of Glacier National Park. Microbiology and Immunology, 2, 26–32.
Porca, E., Jurado, V., Martin-Sanchez, P. M., Hermosin, B., Bastian, F., Alabouvette, C., et al. (2011). Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves. Ecological Indicators, 11, 1594–1598. https://doi.org/10.1016/j.ecolind.2011.04.003.
Pusz, W., Grzeszczuk, J., Zagożdżon, P. P., & Kita, W. (2018). Aeromycological monitoring of disused mines in Poland. Polish Journal of Environmental Studies, 27(1), 1–10. https://doi.org/10.15244/pjoes/75201.
Pusz, W., Król, M., & Zwijacz-Kozica, T. (2017). Airborne fungi as indicators of ecosystem disturbance: An example from selected Tatra Mountains caves (Poland). Aerobiologia, 34, 111–118. https://doi.org/10.1007/s10453-017-9498-y.
Pusz, W., Ogórek, R., Knapik, R., Kozak, B., & Bujak, H. (2015). The occurrence of fungi in the recently discovered Jarkowicka cave in the Karkonosze Mts. (Poland). Geomicrobiology Journal, 32(1), 59–67. https://doi.org/10.1080/01490451.2014.925010.
R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Saiz-Jimenez, C. (2012). Microbiological and environmental issues in show caves. World Journal of Microbiology & Biotechnology, 28(7), 2453–2464. https://doi.org/10.1007/s11274-012-1070-x.
Saiz-Jimenez, C., Cuezva, S., Jurado, V., Fernandez-Cortes, A., Porca, E., Benavente, D., et al. (2011). Paleolithic art in peril: Policy and science collide at Altamira Cave. Science, 334(6052), 42–43. https://doi.org/10.1126/science.1206788.
Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., & Rölleke, S. (2004). Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonin and La Garma). FEMS Microbiology Ecology, 47(2), 235–247. https://doi.org/10.1016/S0168-6496(03)00280-0.
Seifert, K. A., Morgan-Jones, G., Gams, W., & Kendrick, B. (2011). The genera of Hyphomycetes. Utrecht: CBS-KNAW Fungal Biodiversity Centre.
Shah, P., & Pell, J. (2003). Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61(5–6), 413–423. https://doi.org/10.1007/s00253-003-1240-8.
Taylor, E. L. S., Lopes, R., & de Resende Stoianoff, A. (2014). Cave entrance dependent spore dispersion of filamentous fungi isolated from various sediments of Iron Ore Cave in Brazil: A colloquy on human threats while caving. Ambient Science. https://doi.org/10.21276/ambi.2014.01.1.ra02.
Taylor, E. L. S., Resende Stoianoff, M. A. D., & Lopes Ferreira, R. (2013). Mycological study for a management plan of a neotropical show cave (Brazil). International Journal of Speleology, 42(3), 267–277. https://doi.org/10.5038/1827-806X.42.3.10.
UNESCO. (1979). Prehistoric sites and decorated caves of the Vézère Valley. Retrieved June 03, 2019 from http://whc.unesco.org/fr/list/85/.
Vanderwolf, K. J., Malloch, D., McAlpine, D. F., & Forbes, G. J. (2013). A world review of fungi, yeasts, and slime molds in caves. International Journal of Speleology, 42(1), 77–96. https://doi.org/10.5038/1827-806X.42.1.9.
Wang, W., Ma, X., Ma, Y., Mao, L., Wu, F., Ma, X., et al. (2010a). Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang. China. International Biodeterioration & Biodegradation, 64(6), 461–466. https://doi.org/10.1016/j.ibiod.2010.05.005.
Wang, W., Ma, Y., Ma, X., Wu, F., Ma, X., An, L., et al. (2010b). Seasonal variations of airborne bacteria in the Mogao Grottoes, Dunhuang, China. International Biodeterioration and Biodegradation, 64, 309–315. https://doi.org/10.1016/j.ibiod.2010.03.004.
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press Inc.
Wolfinger, R., & O’connell, M. (1993). Generalized linear mixed models a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 48(3–4), 233–243. https://doi.org/10.1080/00949659308811554.
Acknowledgements
We thank Joanna Lignot for English language editing.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leplat, J., François, A., Touron, S. et al. Aerobiological behavior of Paleolithic rock art sites in Dordogne (France): a comparative study in protected sites ranging from rock shelters to caves, with and without public access. Aerobiologia 36, 355–374 (2020). https://doi.org/10.1007/s10453-020-09637-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10453-020-09637-9