Skip to main content

High genetic diversity and variability of microbial communities in near-surface atmosphere of Crete island, Greece

Abstract

Microorganisms are ubiquitous in the atmosphere with hundreds of taxa being identified in air samples collected around the world. Despite their importance on human and ecosystem health, the majority of air microbiological studies have been limited to cultivation-based methods that may not capture all of the microbial diversity in the air. The present study used pyrosequencing analysis of 16S rDNA fragments, in order to examine the short-term variability of microbial assemblage composition in near-surface atmosphere of two coastal cities of Crete island, eastern Mediterranean Sea. A diverse range of 16S rRNA genes was identified at both cities consisting of 17,720 different operation taxonomic units, 23 bacterial and 3 archaeal phyla, 93 orders and 204 families. A core microbiome containing members of Proteobacteria, Actinobacteria and Firmicutes was evidenced at both study sites, regardless the origin of transported air masses. Nevertheless, the local biodiversity profiles presented extensive differences at lower taxonomic level (i.e., species). A total of 7699 sequences were closely related to 101 strains that are commonly found in many different habitats, including agricultural soil, water, air, marine water and sediment, as well as human microbiome. Several of these strains were closely related to pathogens or putative pathogens, which can trigger infections, such as bacteremia and endocarditis to humans and blackleg disease in plants. The identified large differences in local biodiversity together with the presence of many pathogenic relatives demonstrate the significance of spatial variability in atmospheric biogeography and the importance to include airborne microbes in air quality studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Bowers, R. M., Clements, N., Emerson, J. B., Wiedinmyer, C., Hannigan, M. P., & Fierer, N. (2013). Seasonal variability in bacterial and fungal diversity of the near- surface atmosphere. Environmental Science and Technology, 47, 12097–12106.

    CAS  Google Scholar 

  • Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G., Fall, R., et al. (2009). Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Applied and Environmental Microbiology, 75, 5121–5130.

    CAS  Google Scholar 

  • Bowers, R. M., McLetchie, S., Knight, R., & Fierer, N. (2011a). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal, 5, 601–612.

    CAS  Google Scholar 

  • Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Jr., Knight, R., & Fierer, N. (2011b). Sources of bacteria in outdoor air across cities in the Midwestern United States. Applied and Environmental Microbiology, 77, 6350–6356.

    CAS  Google Scholar 

  • Burrows, S. M., Elbert, W., Lawrence, M. G., & Pöschl, U. (2009). Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9, 9263–9280.

    CAS  Google Scholar 

  • Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., et al. (2014). Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environmental Science and Technology, 48, 1499–1507.

    CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336. https://doi.org/10.1038/nmeth.f.303.

    CAS  Article  Google Scholar 

  • Cho, B. C., & Hwang, C. Y. (2011). Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiology Ecology, 76, 327–341.

    CAS  Google Scholar 

  • Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. (2014). Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42, D633–D642.

    CAS  Google Scholar 

  • Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B Biological Sciences, 345(1311), 101–118.

    CAS  Google Scholar 

  • DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., et al. (2014). Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences USA, 110, 2575–2580.

    Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072.

    CAS  Google Scholar 

  • Despres, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Poschl, U. (2007a). Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4, 1127–1141.

    CAS  Google Scholar 

  • Despres, V., Nowoisky, J., Klose, M., Conrad, R., Andreae, M. O., & Poschl, U. (2007b). Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high-alpine air. Biogeosciences Discussion, 4, 349–384.

    Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (hybrid single-particle lagrangian integrated trajectory). Available http://www.arl.noaa.gov/ready/hysplit4.html.

  • Fey, P. D., & Olson, M. E. (2010). Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiology, 5(6), 917–933.

    CAS  Google Scholar 

  • Fierer, N., Hamady, M., Lauber, C. L., & Knight, R. (2008a). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences USA, 105, 17994–17999.

    CAS  Google Scholar 

  • Fierer, N., Liu, Z., Rodriguez-Hernandez, M., Knight, R., Henn, M., & Hernandez, M. T. (2008b). Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology, 74, 200–207.

    CAS  Google Scholar 

  • Greenblatt, C., Baum, J., Klein, B. Y., Nachshon, S., Koltunov, V., & Cano, R. J. (2004). Micrococcus luteus—survival in amber. Microbial Ecology, 48, 120–127.

    CAS  Google Scholar 

  • Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20, 459–477.

    Google Scholar 

  • Griffin, D. W., & Kellogg, C. A. (2004). Dust storms and their impact on ocean and human health: Dust in Earth’s atmosphere. EcoHealth, 1, 284–295.

    Google Scholar 

  • Griffin, D. W., Kubilay, N., Kocak, M., Gray, M. A., Borden, T. C., & Shinn, E. A. (2007). Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41, 4050–4062.

    CAS  Google Scholar 

  • Gromkova, R. C., Mottalini, T. C., & Dove, M. G. (1998). Genetic transformation in Haemophilus parainfluenzae clinical isolates. Current Microbiology, 37(2), 123–126.

    CAS  Google Scholar 

  • Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K., & Prospero, S. (2012). Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology, 20(3), 131–138.

    Google Scholar 

  • Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S., & Benno, Y. (2007). Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 57, 941–946.

    CAS  Google Scholar 

  • Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae - a pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews, 64, 624–653.

    CAS  Google Scholar 

  • Jaenicke, R. (2005). Abundance of cellular material and proteins in the atmosphere. Science, 308, 73.

    CAS  Google Scholar 

  • Jeon, E. M., Kim, H. J., Jung, K., Kim, J. H., Kim, M. Y., Kim, Y. P., et al. (2011). Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment, 45, 4313–4321.

    CAS  Google Scholar 

  • Kageyama, A., Benno, Y., & Nakase, T. (1999). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. International Journal of Systematic Bacteriology, 49, 557–565.

    Google Scholar 

  • Katra, I., Arotsker, L., Krasnov, H., Zaritsky, A., Kushmaro, A., & Ben-Dov, E. (2014). Richness and diversity in dust stormborne biomes at the Southeast Mediterranean. Scientific Reports, 4, 5262. https://doi.org/10.1038/srep05265.

    CAS  Article  Google Scholar 

  • Kirschbaum, J. O., & Kligman, A. M. (1963). The pathogenic role of Corynebacterium acnes in acne vulgaris. Archives of Dermatology, 88, 832–833.

    CAS  Google Scholar 

  • Ku, S. C., Hsueh, P. R., Yang, P. C., & Luh, K. T. (2000). Clinical and microbiological characteristics of bacteremia caused by Acinetobacter lwoffii. European Journal of Clinical Microbiology and Infectious Diseases, 19(7), 501–505.

    CAS  Google Scholar 

  • Lighthart, B. (2000). Mini-review of the concentration variations found in 619 the alfresco atmospheric bacterial populations. Aerobiologia, 16, 7–16.

    Google Scholar 

  • Lighthart, B., & Shaffer, B. T. (1995a). Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral. Aerobiologia, 11, 19–25.

    Google Scholar 

  • Lighthart, B., & Shaffer, B. T. (1995b). Airborne bacteria in the atmosphere surface layer: Temporal distribution above a grass seed field. Applied and Environmental Microbiology, 61, 1492–1496.

    CAS  Google Scholar 

  • Martín, R., Miquel, S., Benevides, L., Bridonneau, C., Robert, V., Hudault, S., et al. (2017). Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Frontiers in Microbiology, 8, 1226.

    Google Scholar 

  • Mayol, E., Arrieta, J. M., Jiménez, M. A., Martínez-Asensio, A., Garcias-Bonet, N., Dachs, J., et al. (2017). Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nature Communications, 8, 201. https://doi.org/10.1038/s41467-017-00110-9.

    CAS  Article  Google Scholar 

  • McCartney, H. A., Fitt, B. D. L., & Schmechel, D. (1997). Sampling bioaerosols in plant pathology. Journal of Aerosol Science, 28, 349–364.

    CAS  Google Scholar 

  • Nørskov-Lauritsen, N. (2014). Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clinical Microbiology Reviews, 27(2), 214–240.

    Google Scholar 

  • Oyaert, M., De Baere, T., Breyne, J., De Laere, E., Mariën, S., Waets, P., et al. (2013). First case of Pseudoclavibacter bifida bacteremia in an immunocompromised host with chronic obstructive pulmonary disease (COPD). Journal of Clinical Microbiology, 51(6), 1973–1976.

    Google Scholar 

  • Polymenakou, P. N. (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3, 87–102.

    Google Scholar 

  • Polymenakou, P. N., Christakis, C. A., Mandalakis, M., & Oulas, A. (2015). Pyrosequencing analysis of microbial communities reveals dominant cosmopolitan phylotypes in deep-sea sediments of the eastern Mediterranean Sea. Research in Microbiology, 166, 448–457.

    CAS  Google Scholar 

  • Polymenakou, P. N., & Mandalakis, M. (2013). Assessing the short-term variability of bacterial composition in background aerosols of the Eastern Mediterranean during a rapid change of meteorological conditions. Aerobiologia, 29, 429–441.

    Google Scholar 

  • Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.

    Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.

    CAS  Google Scholar 

  • Quince, C., Lanzen, A., Davenport, R. J., & Turnbaugh, P. J. (2011). Removing noise from pyrosequenced amplicons. BMC Bioinformatics, 12, 38.

    Google Scholar 

  • Radosevich, J. L., Wilson, W. J., Shinn, J. H., DeSantis, T. Z., & Andersen, G. L. (2002). Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Letters in Applied Microbiology, 34, 162–167.

    CAS  Google Scholar 

  • Ricaurte, J. C., Klein, O., Labombardi, V., Martinez, V., Serpe, A., & Joy, M. (2001). Rothia dentocariosa endocarditis complicated by multiple intracranial hemorrhages. Southern Medical Journal, 94(4), 438–440.

    CAS  Google Scholar 

  • Rosenberg, E., Koren, O., Reshef, L., Efrony, R., & Zilber-Rosenberg, I. (2007). The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5, 355–362.

    CAS  Google Scholar 

  • Rosselli, R., Fiamma, M., Deligios, M., Pintus, G., Pellizzaro, G., Canu, A., et al. (2015). Microbial immigration across the Mediterranean via airborne dust. Scientific Reports, 5, 16306. https://doi.org/10.10385/srep16306.

    CAS  Article  Google Scholar 

  • Smets, W., Moretti, S., Denys, S., & Lebeer, S. (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139, 214–221.

    CAS  Google Scholar 

  • Swanson, C. A., & Sliwinski, M. K. (2013). Archaeal assemblages inhabiting temperate mixed forest soil fluctuate in taxon composition and spatial distribution over time. Archaea, article ID: 870825.

  • Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661.

    CAS  Google Scholar 

  • Wiedinmyer, C., Bowers, R. M., Fierer, N., Horanyi, E., Hannigan, M., Gannet Hallar, A., et al. (2009). The contribution of biological particles to observed particulate organic carbon at a remote high altitude site. Atmospheric Environment, 43, 4278–4282.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hellenic Centre for Marine Research and the Institute of Marine Biology, Biotechnology and Aquaculture through the General Secretariat for Research and Technology, Hellenic Ministry of Education, Research and Religious Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi N. Polymenakou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 658 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polymenakou, P.N., Mandalakis, M., Macheras, M. et al. High genetic diversity and variability of microbial communities in near-surface atmosphere of Crete island, Greece. Aerobiologia 36, 341–353 (2020). https://doi.org/10.1007/s10453-020-09636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09636-w

Keywords

  • 16S rRNA gene
  • Airborne microorganisms
  • Pyrosequencing analysis
  • Mediterranean Sea