Advertisement

Aerobiologia

, Volume 35, Issue 4, pp 703–717 | Cite as

Spatio-temporal monitoring and modelling of birch pollen levels in Belgium

  • Willem W. VerstraetenEmail author
  • Sébastien Dujardin
  • Lucie Hoebeke
  • Nicolas Bruffaerts
  • Rostislav Kouznetsov
  • Nicolas Dendoncker
  • Rafiq Hamdi
  • Catherine Linard
  • Marijke Hendrickx
  • Mikhail Sofiev
  • Andy W. Delcloo
Original Paper

Abstract

In Belgium, ~ 10% of the people is estimated to suffer from allergies due to pollen emitted by the birch family trees. Timely information on forthcoming pollen exposure episodes using a forecasting system can allow patients to take preventive measures. To date, the only available information on pollen concentrations in Belgium comes from five stations that monitor daily airborne birch pollen concentrations, but real-time and detailed spatial information is lacking. Pollen transport models can both quantify and forecast the spatial and temporal distribution of airborne birch pollen concentrations if accurate and updated maps of birch pollen emission sources are available and if the large inter-seasonal variability of birch pollen is considered. Here we show that the SILAM model driven by ECMWF ERA5 meteorological data is able to determine airborne birch pollen levels using updated maps of areal fractions of birch trees, as compared to the pollen observations of the monitoring stations in Belgium. Forest inventory data of the Flemish and Walloon regions were used to update the default MACCIII birch map. Spaceborne MODIS vegetation activity combined with an updated birch fraction map and updated start and end dates of the birch pollen season were integrated into SILAM. The correlation (R2) between SILAM modelled and observed time series of daily birch pollen levels of 50 birch pollen seasons increased up to ~ 50%. The slopes of the linear correlation increased on average with ~ 60%. Finally, SILAM is able to capture the threshold of 80 pollen grains m−3 exposure from the observations.

Keywords

Birch pollen Birch fraction maps Pollen observations SILAM model Time series 

Notes

Acknowledgements

This research was partly funded by the Belgian Science Policy Office (BELSPO) in the frame of the Belgian Research Action through Interdisciplinary Networks Brain (BRAIN.be) programme—project RespirIT (BR/154/A1/RespirIT) and partly funded by the Royal Meteorological Institute of Belgium. We acknowledge the discussions with the other members of the RespirIT project.

Funding

This research was partly funded by the Belgian Science Policy Office (BELSPO) in the frame of the Belgian Research Action through Interdisciplinary Networks Brain (BRAIN.be) programme—project RespirIT (BR/154/A1/RespirIT) and partly funded by the Royal Meteorological Institute of Belgium.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Blomme, K., Tomassen, P., Lapeere, H., et al. (2013). Prevalence of allergic sensitization versus allergic rhinitis symptoms in an unselected population. International Archives of Allergy and Immunology,160(2), 200–207.CrossRefGoogle Scholar
  2. Bruffaerts, N., De Smedt, T., Delcloo, A., et al. (2018). Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium. International Journal of Biometeorology,62, 483–491.  https://doi.org/10.1007/s00484-017-1457-3.CrossRefGoogle Scholar
  3. Busetto, L., & Ranghetti, L. (2016). MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series. Computers & Geosciences,97, 40–48.  https://doi.org/10.1016/j.cageo.2016.08.020.CrossRefGoogle Scholar
  4. Clement, J., Maes, P., van Ypersele de Strihou, Ch., van der Groen, G., Barrios, J. M., Verstraeten, W. W., et al. (2010). Beechnuts and outbreaks of nephropathia epidemica (NE): Of mast, mice and men. Nephrology, Dialysis, Transplantation,25, 1740–1746.  https://doi.org/10.1093/ndt/gfq122.CrossRefGoogle Scholar
  5. D’Amato, G., Cecchi, L., Bonini, S., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy,62, 976–990.  https://doi.org/10.1111/j.1398-9995.2007.01393.x.CrossRefGoogle Scholar
  6. Dujardin, S., Linard, C., & Dendoncker, N. (2017). Research note on mapping allergenic tree species in Belgium. BR/154/A1/RespirIT, Belgian research action through interdisciplinary networks.Google Scholar
  7. Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia,33, 293–295.  https://doi.org/10.1007/s10453-017-9496-0.CrossRefGoogle Scholar
  8. Galán, C., Smith, M., Thibaudon, M., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,30, 385.  https://doi.org/10.1007/s10453-014-9335-5.CrossRefGoogle Scholar
  9. Hemery, G. E., Savill, P. S., & Pryor, S. N. (2005). Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees. Forest Ecology and Management,215, 285–294.CrossRefGoogle Scholar
  10. Hoebeke, L., Bruffaerts, N., Verstraeten, C., et al. (2018). Thirty-four years of pollen monitoring: An evaluation of the temporal variation of pollen seasons in Belgium. Aerobiologia.  https://doi.org/10.1007/s10453-017-9503-5.CrossRefGoogle Scholar
  11. Khwarahma, N. R., Dash, J., Skjøth, C. A., Newnham, R. M., Adams-Groom, B., Heade, K., et al. (2017). Mapping the birch and grass pollen seasons in the UK using satellite sensor time-series. Science of the Total Environment,578, 586–600.CrossRefGoogle Scholar
  12. Kouznetsov, R., & Sofiev, M. (2012). A methodology for evaluation of vertical dispersion and dry deposition of atmospheric aerosols. Journal of Geophysical Research.  https://doi.org/10.1029/2011JD016366.CrossRefGoogle Scholar
  13. Linkosalo, T., Ranta, H., Oksanen, A., Siljamo, P., Luomajoki, A., Kukkonen, J., et al. (2010). A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology,150, 6–11.  https://doi.org/10.1016/j.agrformet.2010.08.007.CrossRefGoogle Scholar
  14. Pauling, A., Rotach, M. W., Gehrig, R., & Clot, B. (2012). A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. International Journal of Biometeorology,56(5), 949–958.  https://doi.org/10.1007/s00484-011-0505-7.CrossRefGoogle Scholar
  15. Pfaar, O., Bastl, K., Berger, U., Buters, J., Calderon, M. A., Clot, B., et al. (2017). Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen induced rhinoconjunctivitis—An EAACI position paper. Allergy,72, 713–722.  https://doi.org/10.1111/all.13092.CrossRefGoogle Scholar
  16. Prank, M., Chapman, D. S., Bullock, J. M., Belmonte, J., et al. (2013). An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology,182–183, 43–53.  https://doi.org/10.1016/j.agrformet.2013.08.003.CrossRefGoogle Scholar
  17. Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., & Genikhovich, E. (2016). Statistical modelling of non-stationary processes of atmospheric pollution from natural sources: Example of birch pollen. Agricultural and Forest Meteorology,226–227, 96–107.  https://doi.org/10.1016/j.agrformet.2016.05.016.CrossRefGoogle Scholar
  18. Ritenberga, O., Sofiev, M., Siljamo, P., Saarto, A., Dahl, A., Ekebome, A., et al. (2018). A statistical model for predicting the inter-annual variability of birch pollen abundance in Northern and North-Eastern Europe. Science of the Total Environment,615, 228–239.CrossRefGoogle Scholar
  19. Sciensano. Section of the Belgian aerobiological surveillance network. Retrieved July 9, 2018, from https://airallergy.sciensano.be/.
  20. Siljamo, P., Sofiev, M., Filatova, E., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International Journal of Biometeorology,57, 125–136.  https://doi.org/10.1007/s00484-012-0539-5.CrossRefGoogle Scholar
  21. Sofiev, M. (2016). On impact of transport conditions on variability of the seasonal pollen index. Aerobiologia,33, 167–179.  https://doi.org/10.1007/s10453-016-9459-x.CrossRefGoogle Scholar
  22. Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., et al. (2015a). MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry Physics,15, 8115–8130.CrossRefGoogle Scholar
  23. Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology,57, 45–58.  https://doi.org/10.1007/s00484-012-0532-z.CrossRefGoogle Scholar
  24. Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology,50, 392–402.  https://doi.org/10.1007/s00484-006-0027-x.CrossRefGoogle Scholar
  25. Sofiev, M., Vira, J., Kouznetsov, R., Prank, M., Soares, J., & Genikhovich, E. (2015b). Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin. Geoscientific Model Development,8, 3497–3522.  https://doi.org/10.5194/gmd-8-3497-2015.CrossRefGoogle Scholar
  26. Spieksma, F. Th. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana,34(1), 51–57.  https://doi.org/10.1080/00173139509429033.CrossRefGoogle Scholar
  27. Tanentzap, A. J., & Monks, A. (2018). Making the mast of a rainy day: Environmental constraints can synchronize mass seeding across populations. New Phytologist,219, 6–8.  https://doi.org/10.1111/nph.15219.CrossRefGoogle Scholar
  28. Verstraeten, W. W., Boersma, K. F., Douros, J., Williams, J. E., Eskes, H., Liu, F., et al. (2018). Top-down NOX emissions of European cities based on the downwind plume of modelled and space-borne tropospheric NO2 columns. Sensors,18, 2893.  https://doi.org/10.3390/s18092893.CrossRefGoogle Scholar
  29. WAO. World Allergy Organization. How are you managing pollen allergies in a changing global climate? Retrieved July 9, 2018, from www.worldallergy.org/UserFiles/file/waw16-slide-set.pdf.
  30. WHO. (2003). Phenology and human health: Allergic disorders. Copenhagen: WHO.Google Scholar
  31. Yli-Panula, E., Fekedulegn, D. B., Green, B. J., & Ranta, H. (2009). Analysis of airborne Betula pollen in Finland; a 31-year perspective. International Journal of Environmental Research and Public Health,6, 1706–1723.  https://doi.org/10.3390/ijerph6061706.CrossRefGoogle Scholar
  32. Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment,95, 164–176.CrossRefGoogle Scholar
  33. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE,7(4), e34076.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Royal Meteorological Institute of BelgiumUkkel, BrusselsBelgium
  2. 2.Department of GeographyUniversity of NamurNamurBelgium
  3. 3.Mycology and Aerobiology UnitSciensanoBrusselsBelgium
  4. 4.Finnish Meteorological InstituteHelsinkiFinland
  5. 5.Department of Physics and AstronomyGhent UniversityGhentBelgium

Personalised recommendations