Skip to main content

Regional variation in airborne Alternaria spore concentrations in Denmark through 2012–2015 seasons: the influence of meteorology and grain harvesting

Abstract

High airborne Alternaria spore concentrations measured in eastern Denmark have been associated with local agricultural sources. However, the density of agricultural areas is highest in western Denmark. This is the first report of airborne Alternaria spore concentrations obtained with Burkard volumetric spore sampler in western Denmark, Viborg. We compared the concentrations of airborne Alternaria spores and the patterns of air mass transport using HYSPLIT model between Copenhagen and Viborg for the seasons 2012–2015, with the main focus on the days with daily average Alternaria spore concentrations ≥ 100 s m−3 (high concentration days). Except for 2012, Annual Spore Integrals (ASIns) were on average 3335 s day m−3 higher in Viborg than in Copenhagen. The high concentration days during 2012–2015 occurred more frequently and with higher values in Viborg (96 days; mean = 381 s m−3) than in Copenhagen (79 days; mean = 270 s m−3). We found increased shares of trajectories coming from South-East on the high concentration days and increased shares of trajectories coming from the West and North-West on the days with concentrations below 100 s m−3 for both stations. July and August had the highest spore integrals matching the periods of grain harvesting in Denmark. The absence of the concurrent grain harvesting in Denmark was associated with the lowest ASIns in 2012. The results of this study support the hypothesis that local sources cause the main load of airborne Alternaria spore concentrations in Denmark; however, the contribution from the remote source areas in northern Germany, Poland and southern Sweden remains unquantified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abuley, I. K., Nielsen, B. J., & Labouriau, R. (2018). Resistance status of cultivated potatoes to early blight (Alternaria solani) in Denmark. Plant Pathology, 67(2), 315–326.

    CAS  Article  Google Scholar 

  • Aira, M.-J., Rodríguez-Rajo, F.-J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Abreu, I., et al. (2013). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology, 57(2), 265–274.

    Article  Google Scholar 

  • Al-Nadabi, H. H., Maharachchikumbura, S. S. N., Agrama, H., Al-Azri, M., Nasehi, A., & Al-Sadi, A. M. (2018). Molecular characterization and pathogenicity of Alternaria species on wheat and date palms in Oman. European Journal of Plant Pathology, 152(3), 577–588.

    CAS  Article  Google Scholar 

  • Andersen, B., Thrane, U., Svendsen, A., & Rasmussen, I. A. (1996). Associated field mycobiota on malt barley. Canadian Journal of Botany, 74(6), 854–858.

    Article  Google Scholar 

  • Atkinson, R. W., Strachan, D. P., Anderson, H. R., Hajat, S., & Emberlin, J. (2006). Temporal associations between daily counts of fungal spores and asthma exacerbations. Occupational and Environmental Medicine, 63(9), 580–590.

    CAS  Article  Google Scholar 

  • Barnes, E. H. (Ed.). (1979). Alternaria diseases. In Atlas and manual of plant pathology. Boston, MA: Springer. https://doi.org/10.1007/978-1-4684-3495-8.

    Chapter  Google Scholar 

  • Bilińska, D., Skjøth, C. A., Werner, M., Kryza, M., Malkiewicz, M., Krynicka, J., et al. (2017). Source regions of ragweed pollen arriving in south-western Poland and the influence of meteorological data on the HYSPLIT model results. Aerobiologia, 33(3), 315–326.

    Article  Google Scholar 

  • Broggi, L. E., González, H. H. L., Resnik, S. L., & Pacin, A. (2007). Alternaria alternate prevalence in cereal grains and soybean seeds from Entre Rios, Argentina. Revista iberoamericana de micología, 24(1), 47–51.

    Article  Google Scholar 

  • Bush, R. K., & Prochnau, J. J. (2004). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113(2), 227–234.

    Article  Google Scholar 

  • Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19(3/4), 191–199.

    Article  Google Scholar 

  • De Linares, C., Belmonte, J., Canela, M., de la Guardia, C. D., Alba-Sanchez, F., Sabariego, S., et al. (2010). Dispersal patterns of Alternaria conidia in Spain. Agricultural and Forest Meteorology, 150(12), 1491–1500.

    Article  Google Scholar 

  • Delfino, R. J., Zeiger, R. S., Seltzer, J. M., Street, D. H., Matteucci, R. M., Anderson, P. R., et al. (1997). The effect of outdoor fungal spore concentrations on daily asthma severity. Environmental Health Perspectives, 105(6), 622–635.

    CAS  Article  Google Scholar 

  • Denning, D. W., O’Driscoll, B. R., Hogaboam, C. M., Bowyer, P., & Niven, R. M. (2006). The link between fungi and severe asthma: A summary of the evidence. European Respiratory Journal, 27(3), 615–626.

    CAS  Article  Google Scholar 

  • Disalov, J. N., Bodroža-Solarov, M. I., Krulj, J. A., Pezo, L. L., Curcic, N. Ž., Kojic, J. S., et al. (2018). Impact of Alternaria spp. and Alternaria toxins on quality of spelt wheat. Journal of Agricultural Science, 10(2), 89.

    Article  Google Scholar 

  • Draxler, R. R., Stunder, B., Rolph, G., Stein, A., & Taylor, A. (2018). Hysplit4 user’s guide. Version 4—Last Revision: February 2018. https://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf.

  • Eduard, W. (2009). Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting AU—Eduard, Wijnand. Critical Reviews in Toxicology, 39(10), 799–864.

    CAS  Article  Google Scholar 

  • Escuredo, O., Seijo, M. C., Fernández-González, M., & Iglesias, I. (2011). Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology, 55(2), 243–252.

    Article  Google Scholar 

  • Farrar, J. J., Pryor, B. M., & Davis, R. M. (2004). Alternaria diseases of carrot. Plant Disease, 88(8), 776–784.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C. A., Maya-Manzano, J. M., et al. (2015). Potential sources of airborne Alternaria spp. spores in South-West Spain. Science of the Total Environment, 533, 165–176.

    Article  CAS  Google Scholar 

  • Friesen, T. L., De Wolf, E. D., & Francl, L. J. (2001). Source strength of wheat pathogens during combine harvest. Aerobiologia, 17(4), 293–299.

    Article  Google Scholar 

  • Gabriel, M. F., Postigo, I., Tomaz, C. T., & Martínez, J. (2016). Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environment International, 89–90, 71–80.

    Article  Google Scholar 

  • Galan, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerbiologia, 33, 293–295.

    Article  Google Scholar 

  • Gannibal, P. B. (2018). Factors affecting Alternaria spp. appearance in the grains in European Russia. Agricultural Biology, 53(3), 605–615.

    Google Scholar 

  • Gannibal, P. B., & Yli-Mattila, T. (2005). Cultural and molecular differentiation of small-spored Alternaria species associated with Poaceae. Mycology and Phytopathology, 39(4), 13–22.

    Google Scholar 

  • Gavrilova, O. P., Gannibal, F. B., & Gakaeva, T. Y. (2016). Fusarium and Alternaria fungi in grain of oats grown in the North-Western Russia regarding cultivar specificity. Agricultural Biology, 51(1), 111–118.

    Google Scholar 

  • Górny, R. L., Reponen, T., Willeke, K., Schmechel, D., Robine, E., Boissier, M., et al. (2002). Fungal fragments as indoor air biocontaminants. Applied and Environmental Microbiology, 68(7), 3522–3531.

    Article  CAS  Google Scholar 

  • Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34(3), 135–154.

    CAS  Article  Google Scholar 

  • Green, B. J., Torvey, E. R., Sercombe, J. K., Blachere, F. M., Beezhold, D. H., & Schmechel, D. (2006). Airborne fungal fragments and allergenicity. Medical Mycology, 44(1), S245–S255.

    CAS  Article  Google Scholar 

  • Grewling, Ł., Nowak, M., Szymanska, A., Kostecki, Ł., & Bogawski, P. (2018). Temporal variability in the allergenicity of airborne Alternaria spores. Medical Mycology, 2, 1–9.

    Google Scholar 

  • Grinn-Gofroń, A., & Mika, A. (2008). Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia, 24(2), 89.

    Article  Google Scholar 

  • Grundström, M., Dahl, Å., Ou, T., Chen, D., & Pleijel, H. (2017). The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities. Aerobiologia, 33(4), 457–471.

    Article  Google Scholar 

  • Gutiérrez-Rodríguez, A., Postigo, I., Guisantes, J. A., Suñén, E., & Martínez, J. (2011). Identification of allergens homologous to Alt a 1 from Stemphylium botryosum and Ulocladium botrytis. Medical Mycology, 49(8), 892–896.

    Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Hong, S. G., Cramer, R. A., Lawrence, C. B., & Pryor, B. M. (2005). Alt a 1 allergen homologs from Alternaria and related taxa: Analysis of phylogenetic content and secondary structure. Fungal Genetics and Biology, 42(2), 119–129.

    CAS  Article  Google Scholar 

  • Hyde, H. A., Richards, M., & Williams, D. A. (1956). Allergy to mould spores in Britain. British Medical Journal, 1(4972), 886–890.

    CAS  Article  Google Scholar 

  • Kasprzyk, I., Rodinkova, V., Šaulienė, I., Ritenberga, O., Grinn-Gofron, A., Nowak, M., et al. (2015). Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environmental Science and Pollution Research, 22(12), 9260–9274.

    CAS  Article  Google Scholar 

  • Kasprzyk, I., Sulborska, A., Nowak, M., Szymanska, A., Kaczmarek, J., Haratym, W., et al. (2013). Fluctuation range of the concentration of airborne Alternaira conidiospores sampled at different geographical locations in Poland (2010–2011). Acta Agrobotanica, 66(1), 65–76.

    Article  Google Scholar 

  • Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.

    Article  Google Scholar 

  • Kosiak, B., Torp, M., Skjerve, E., & Andersen, B. (2004). Alternaria and Fusarium in Norwegian grains of reduced quality—a matched pair sample study. International Journal of Food Microbiology, 93(1), 51–62.

    Article  Google Scholar 

  • Larsen, L., & Gravesen, S. (1991). Seasonal variation of outdoor airborne viable microfungi in Copenhagen. Denmark. Grana, 30(2), 467–471.

    Article  Google Scholar 

  • Larsen, L. S. (1981). A three-year-survey of microfungi in the air of Copenhagen 1977–79. Allergy, 36(1), 15–22.

    CAS  Article  Google Scholar 

  • Last, F. T. (1955). The spore content of air within and above mildew-infected cereal crops. Transactions of the British Mycological Society, 38(4), 453–464.

    Article  Google Scholar 

  • Lawrence, D. P., Gannibal, P. B., Peever, T. L., & Pryor, B. M. (2013). The sections of Alternaria: Formalizing species-group concepts. Mycologia, 105(3), 530–546.

    Article  Google Scholar 

  • Lawrence, D. P., Rotondo, F., & Gannibal, P. B. (2015). Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycological Progress, 15(1), 3.

    Article  Google Scholar 

  • Leiminger, J., & Hausladen, H. (2012). Early blight control in potato using disease-orientated threshold values. Plant Disease, 96(1), 124–130.

    CAS  Article  Google Scholar 

  • Levetin, E. (2004). Methods for aeroallergen sampling. Current Allergy and Asthma Reports, 4(5), 376–383.

    Article  Google Scholar 

  • Levetin, E., Horner, W. E., Scott, J. A., Barnes, C., Baxi, S., Chew, G. L., et al. (2016). Taxonomy of allergenic fungi. The Journal of Allergy and Clinical Immunology in Practice, 4(3), 375–385.

    Article  Google Scholar 

  • Logrieco, A., Bottalico, A., Mulé, G., Moretti, A., & Perrone, G. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some mediterranean crops. European Journal of Plant Pathology, 109(7), 645–667.

    CAS  Article  Google Scholar 

  • Logrieco, A., Bottalico, A., Solfrizzo, M., & Mule, G. (1990). Incidence of Alternaria species in grains from mediterranean countries and their ability to produce mycotoxins. Mycologia, 82(4), 501–505.

    Article  Google Scholar 

  • Logrieco, A., Moretti, A., & Solfrizzo, M. (2009). Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin Journal, 2(2), 129–140.

    CAS  Article  Google Scholar 

  • Lôiveke, H., Ilumäe, E., & Laitamm, H. (2004). Microfungi in grain and grain feeds and their potential toxicity. Agronomy Research, 2(2), 195–205.

    Google Scholar 

  • Lyngvig, H. S. (2011). Sådan tørrer du kornet. https://www.landbrugsinfo.dk/maskiner-markteknik/hoest-optagning-og-opbevaring/straaafgroeder/sider/pl_pn_11_445.aspx.

  • Maya-Manzano, J. M., Muñoz-Triviño, M., Fernández-Rodríguez, S., Silva-Palacios, I., Gonzalo-Garijo, A., & Tormo-Molina, R. (2016). Airborne Alternaria conidia in Mediterranean rural environments in SW of Iberian Peninsula and weather parameters that influence their seasonality in relation to climate change. Aerobiologia, 32(1), 95–108.

    Article  Google Scholar 

  • Mercado Vergnes, D., Renard, M.-E., Duveiller, E., & Maraite, H. (2006). Identification of Alternaria spp. on wheat by pathogenicity assays and sequencing. Plant Pathology, 55(4), 485–493.

    Article  Google Scholar 

  • Mitakakis, T. Z., Clift, A., & McGee, P. A. (2001). The effect of local cropping activities and weather on the airborne concentration of allergenic Alternaria spores in rural Australia. Grana, 40(4–5), 230–239.

    Article  Google Scholar 

  • Money, N. P. (2016). Chapter 3—Spore production, discharge, and dispersal. In S. C. Watkinson, L. Boddy, & N. P. Money (Eds.), The fungi (3rd ed., pp. 67–97). Boston: Academic Press.

    Chapter  Google Scholar 

  • Müller, M. E. H., & Korn, U. (2013). Alternaria mycotoxins in wheat—A 10 years survey in the Northeast of Germany. Food Control, 34(1), 191–197.

    Article  CAS  Google Scholar 

  • Nicolaisen, M., West, J. S., Sapkota, R., Canning, G. G. M., Schoen, C., & Justesen, A. F. (2017). Fungal Communities including plant pathogens in near surface air are similar across Northwestern Europe. Frontiers in Microbiology, 8, 1729.

    Article  Google Scholar 

  • Nielsen, B. J. (2015). Control of late blight (Phytophtora infestans) and early blight (Alternaria solani, A. alternata) in potatoes. Applied Crop Protection, 8, 69–120.

    Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.

    Article  Google Scholar 

  • O’Hollaren, M. T., Yunginger, J. W., Offord, K. P., Somers, M. J., O’Connell, E. J., Ballard, D. J., et al. (1991). Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. New England Journal of Medicine, 324(6), 359–363.

    Article  Google Scholar 

  • Oliveira, M., Delgado, L., Ribeiro, H., & Abreu, I. (2010). Fungal spores from Pleosporales in the atmosphere of urban and rural locations in Portugal. Journal of Environmental Monitoring, 12(5), 1187–1194.

    CAS  Article  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25(2), 85–98.

    Article  Google Scholar 

  • Olsen, Y., Begovic, T., Skjøth, C. A., Rasmussen, K., Gosewinkel, U., Hertel, O., et al. (2019). Grain harvesting as a local source of Cladosporium spp. in Denmark. Aerobiologia. https://doi.org/10.1007/s10453-018-09556-w.

    Article  Google Scholar 

  • Pedersen, C. Å. (2012). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersen (Ed.), Oversigt over Landsforsøgene 2012. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Vidensentret for Landbrug: Aarhus, Denmark.

    Google Scholar 

  • Pedersen, C. Å. (2013). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersen (Ed.), Oversigt over Landsforsøgene 2013. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Videcentret for Landbrug: Aarhus, Denmark.

    Google Scholar 

  • Pedersen, C. Å. (2014). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersen (Ed.), Oversigt over Landsforsøgene 2014. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Videcentret for Landbrug P/S: Aarhus, Denmark.

    Google Scholar 

  • Pedersen, C. Å. (2015). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersesn (Ed.), Oversigt over landsforsøgene 2015. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. SEGES P/S: Aarhus, Denmark.

    Google Scholar 

  • Ram, R. S., & Chauhan, V. B. (1998). Assessment of yield losses due to Alternaria leaf spot in various cultivars of mustard and rapeseed. Journal of Mycopathological Research, 36(2), 109–111.

    Google Scholar 

  • Reponen, T., Seo, S.-C., Grimsley, F., Lee, T., Crawford, C., & Grinshpun, S. A. (2007). Fungal fragments in moldy houses: A field study in homes in New Orleans and Southern Ohio. Atmospheric Environment, 41(37), 8140–8149.

    CAS  Article  Google Scholar 

  • Reyes, E. S., de la Cruz, D. R., Merino, E., & Sánchez, J. S. (2009). Meteorological and agricultural effects on airborne Alternaria and Cladosporium spores and clinical aspects in Valladolid [Spain]. Annals of Agricultural and Environmental Medicine, 16(1), 53–61.

    Google Scholar 

  • RodrÍGuez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507.

    Article  Google Scholar 

  • Rotem, J. (1994). The genus Alternaria: Biology, epidemiology, and pathogenicity. USA: American Phytopathological Society.

    Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84(1), 88–99.

    Article  CAS  Google Scholar 

  • Sadyś, M., Skjøth, C. A., & Kennedy, R. (2015). Determination of Alternaria spp. habitats using 7-day volumetric spore trap, hybrid single particle lagrangian integrated trajectory model and geographic information system. Urban Climate, 14, 429–440.

    Article  Google Scholar 

  • Sáenz-de-Santamaría, M., Postigo, I., Gutierrez-Rodríguez, A., Cardona, G., Guisantes, J. A., Asturias, J., et al. (2006). The major allergen of Alternaria alternata (Alt a 1) is expressed in other members of the Pleosporaceae family. Mycoses, 49(2), 91–95.

    Article  Google Scholar 

  • Saharan, G. S., Meena, P. D., & Mehta, N. (2016). Alternaria diseases of crucifers: Biology, ecology and disease management. Hoboken: Wiley.

    Book  Google Scholar 

  • Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U., & Renton, M. (2012). Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Microbial Ecology, 63(3), 578–585.

    Article  Google Scholar 

  • Ščevková, J., Dušička, J., Mičieta, K., & Somorčík, J. (2016). The effects of recent changes in air temperature on trends in airborne Alternaria, Epicoccum and Stemphylium spore seasons in Bratislava (Slovakia). Aerobiologia, 32(1), 69–81.

    Article  Google Scholar 

  • Semple, S. (2005). Assessing occupational and environmental exposure. Occupational Medicine, 55(6), 419–424.

    CAS  Article  Google Scholar 

  • Skjøth, C., Bilinska, D., Werner, M., Malkiewicz, M., Adams-Groom, B., Kryza, M., et al. (2015). Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (Wroclaw) during 2005–2014. Acta Agrobotanica, 68(4), 315–324. https://doi.org/10.5586/aa.2015.044.

    Article  Google Scholar 

  • Skjøth, C. A., Damialis, A., Belmonte, J., De Linares, C., Fernández-Rodríguez, S., Grinn-Gofroń, A., et al. (2016). Alternaria spores in the air across Europe: Abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia, 32(1), 3–22.

    Article  Google Scholar 

  • Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150(9), 1203–1210.

    Article  Google Scholar 

  • Skjøth, C. A., Sommer, J., Frederiksen, L., & Gosewinkel Karlson, U. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12(22), 11107–11123.

    Article  CAS  Google Scholar 

  • Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37(8), 1204–1212.

    Article  Google Scholar 

  • Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., et al. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology, 64(4), 973–985.

    CAS  Article  Google Scholar 

  • Song, F., Tian, X., Fan, X., & He, X. (2010). Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia, 102(1), 20–26.

    Article  Google Scholar 

  • Stach, A., Smith, M., Skjøth, C. A., & Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznań (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51(4), 275–286.

    CAS  Article  Google Scholar 

  • Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077.

    Article  Google Scholar 

  • Stennett, P., & Beggs, P. (2004). Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. International Journal of Biometeorology, 49(2), 98–105.

    CAS  Article  Google Scholar 

  • Stepalska, D., & Wolek, J. (2009). The estimation of fungal spore concentrations using two counting methods. Acta Agrobotanica, 62(2), 117–123.

    Article  Google Scholar 

  • Stieb, D. M., Beveridge, R. C., Brook, J. R., Smith-Doiron, M., Burnett, R. T., Dales, R. E., et al. (2000). Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. Journal of Exposure Science & Environmental Epidemiology, 10(5), 461–477.

    CAS  Article  Google Scholar 

  • Theilgaard, J. (2007). Det danske vejr. Denmark: Gyldendal.

    Google Scholar 

  • Twaroch, T. E., Curin, M., Valenta, R., & Swoboda, I. (2015). Mold allergens in respiratory allergy: From structure to therapy. Allergy Asthma Immunol Res, 7(3), 205–220.

    CAS  Article  Google Scholar 

  • Van der Waals, J. E., Korsten, L., & Aveling, T. A. S. (2001). A review of early blight of potato. African Plant Protection, 7(2), 91–102.

    Google Scholar 

  • Vázquez de Aldana, B. R., Bills, G., & Zabalgogeazcoa, I. (2013). Are endophytes an important link between airborne spores and allergen exposure? Fungal Diversity, 60(1), 33–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Olsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 112 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olsen, Y., Gosewinkel, U.B., Skjøth, C.A. et al. Regional variation in airborne Alternaria spore concentrations in Denmark through 2012–2015 seasons: the influence of meteorology and grain harvesting. Aerobiologia 35, 533–551 (2019). https://doi.org/10.1007/s10453-019-09587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-019-09587-x

Keywords

  • Alternaria spp.
  • Spore dispersion
  • HYSPLIT
  • Back-trajectories
  • Grain harvesting