Advertisement

Aerobiologia

, Volume 35, Issue 3, pp 533–551 | Cite as

Regional variation in airborne Alternaria spore concentrations in Denmark through 2012–2015 seasons: the influence of meteorology and grain harvesting

  • Yulia OlsenEmail author
  • Ulrich Bay Gosewinkel
  • Carsten Ambelas Skjøth
  • Ole Hertel
  • Karen Rasmussen
  • Torben Sigsgaard
Original Paper
  • 104 Downloads

Abstract

High airborne Alternaria spore concentrations measured in eastern Denmark have been associated with local agricultural sources. However, the density of agricultural areas is highest in western Denmark. This is the first report of airborne Alternaria spore concentrations obtained with Burkard volumetric spore sampler in western Denmark, Viborg. We compared the concentrations of airborne Alternaria spores and the patterns of air mass transport using HYSPLIT model between Copenhagen and Viborg for the seasons 2012–2015, with the main focus on the days with daily average Alternaria spore concentrations ≥ 100 s m−3 (high concentration days). Except for 2012, Annual Spore Integrals (ASIns) were on average 3335 s day m−3 higher in Viborg than in Copenhagen. The high concentration days during 2012–2015 occurred more frequently and with higher values in Viborg (96 days; mean = 381 s m−3) than in Copenhagen (79 days; mean = 270 s m−3). We found increased shares of trajectories coming from South-East on the high concentration days and increased shares of trajectories coming from the West and North-West on the days with concentrations below 100 s m−3 for both stations. July and August had the highest spore integrals matching the periods of grain harvesting in Denmark. The absence of the concurrent grain harvesting in Denmark was associated with the lowest ASIns in 2012. The results of this study support the hypothesis that local sources cause the main load of airborne Alternaria spore concentrations in Denmark; however, the contribution from the remote source areas in northern Germany, Poland and southern Sweden remains unquantified.

Keywords

Alternaria spp. Spore dispersion HYSPLIT Back-trajectories Grain harvesting 

Supplementary material

10453_2019_9587_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 112 kb)

References

  1. Abuley, I. K., Nielsen, B. J., & Labouriau, R. (2018). Resistance status of cultivated potatoes to early blight (Alternaria solani) in Denmark. Plant Pathology, 67(2), 315–326.CrossRefGoogle Scholar
  2. Aira, M.-J., Rodríguez-Rajo, F.-J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Abreu, I., et al. (2013). Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. International Journal of Biometeorology, 57(2), 265–274.CrossRefGoogle Scholar
  3. Al-Nadabi, H. H., Maharachchikumbura, S. S. N., Agrama, H., Al-Azri, M., Nasehi, A., & Al-Sadi, A. M. (2018). Molecular characterization and pathogenicity of Alternaria species on wheat and date palms in Oman. European Journal of Plant Pathology, 152(3), 577–588.CrossRefGoogle Scholar
  4. Andersen, B., Thrane, U., Svendsen, A., & Rasmussen, I. A. (1996). Associated field mycobiota on malt barley. Canadian Journal of Botany, 74(6), 854–858.CrossRefGoogle Scholar
  5. Atkinson, R. W., Strachan, D. P., Anderson, H. R., Hajat, S., & Emberlin, J. (2006). Temporal associations between daily counts of fungal spores and asthma exacerbations. Occupational and Environmental Medicine, 63(9), 580–590.CrossRefGoogle Scholar
  6. Barnes, E. H. (Ed.). (1979). Alternaria diseases. In Atlas and manual of plant pathology. Boston, MA: Springer.  https://doi.org/10.1007/978-1-4684-3495-8.CrossRefGoogle Scholar
  7. Bilińska, D., Skjøth, C. A., Werner, M., Kryza, M., Malkiewicz, M., Krynicka, J., et al. (2017). Source regions of ragweed pollen arriving in south-western Poland and the influence of meteorological data on the HYSPLIT model results. Aerobiologia, 33(3), 315–326.CrossRefGoogle Scholar
  8. Broggi, L. E., González, H. H. L., Resnik, S. L., & Pacin, A. (2007). Alternaria alternate prevalence in cereal grains and soybean seeds from Entre Rios, Argentina. Revista iberoamericana de micología, 24(1), 47–51.CrossRefGoogle Scholar
  9. Bush, R. K., & Prochnau, J. J. (2004). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113(2), 227–234.CrossRefGoogle Scholar
  10. Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19(3/4), 191–199.CrossRefGoogle Scholar
  11. De Linares, C., Belmonte, J., Canela, M., de la Guardia, C. D., Alba-Sanchez, F., Sabariego, S., et al. (2010). Dispersal patterns of Alternaria conidia in Spain. Agricultural and Forest Meteorology, 150(12), 1491–1500.CrossRefGoogle Scholar
  12. Delfino, R. J., Zeiger, R. S., Seltzer, J. M., Street, D. H., Matteucci, R. M., Anderson, P. R., et al. (1997). The effect of outdoor fungal spore concentrations on daily asthma severity. Environmental Health Perspectives, 105(6), 622–635.CrossRefGoogle Scholar
  13. Denning, D. W., O’Driscoll, B. R., Hogaboam, C. M., Bowyer, P., & Niven, R. M. (2006). The link between fungi and severe asthma: A summary of the evidence. European Respiratory Journal, 27(3), 615–626.CrossRefGoogle Scholar
  14. Disalov, J. N., Bodroža-Solarov, M. I., Krulj, J. A., Pezo, L. L., Curcic, N. Ž., Kojic, J. S., et al. (2018). Impact of Alternaria spp. and Alternaria toxins on quality of spelt wheat. Journal of Agricultural Science, 10(2), 89.CrossRefGoogle Scholar
  15. Draxler, R. R., Stunder, B., Rolph, G., Stein, A., & Taylor, A. (2018). Hysplit4 user’s guide. Version 4—Last Revision: February 2018. https://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf.
  16. Eduard, W. (2009). Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting AU—Eduard, Wijnand. Critical Reviews in Toxicology, 39(10), 799–864.CrossRefGoogle Scholar
  17. Escuredo, O., Seijo, M. C., Fernández-González, M., & Iglesias, I. (2011). Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology, 55(2), 243–252.CrossRefGoogle Scholar
  18. Farrar, J. J., Pryor, B. M., & Davis, R. M. (2004). Alternaria diseases of carrot. Plant Disease, 88(8), 776–784.CrossRefGoogle Scholar
  19. Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C. A., Maya-Manzano, J. M., et al. (2015). Potential sources of airborne Alternaria spp. spores in South-West Spain. Science of the Total Environment, 533, 165–176.CrossRefGoogle Scholar
  20. Friesen, T. L., De Wolf, E. D., & Francl, L. J. (2001). Source strength of wheat pathogens during combine harvest. Aerobiologia, 17(4), 293–299.CrossRefGoogle Scholar
  21. Gabriel, M. F., Postigo, I., Tomaz, C. T., & Martínez, J. (2016). Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environment International, 89–90, 71–80.CrossRefGoogle Scholar
  22. Galan, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerbiologia, 33, 293–295.CrossRefGoogle Scholar
  23. Gannibal, P. B. (2018). Factors affecting Alternaria spp. appearance in the grains in European Russia. Agricultural Biology, 53(3), 605–615.Google Scholar
  24. Gannibal, P. B., & Yli-Mattila, T. (2005). Cultural and molecular differentiation of small-spored Alternaria species associated with Poaceae. Mycology and Phytopathology, 39(4), 13–22.Google Scholar
  25. Gavrilova, O. P., Gannibal, F. B., & Gakaeva, T. Y. (2016). Fusarium and Alternaria fungi in grain of oats grown in the North-Western Russia regarding cultivar specificity. Agricultural Biology, 51(1), 111–118.Google Scholar
  26. Górny, R. L., Reponen, T., Willeke, K., Schmechel, D., Robine, E., Boissier, M., et al. (2002). Fungal fragments as indoor air biocontaminants. Applied and Environmental Microbiology, 68(7), 3522–3531.CrossRefGoogle Scholar
  27. Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34(3), 135–154.CrossRefGoogle Scholar
  28. Green, B. J., Torvey, E. R., Sercombe, J. K., Blachere, F. M., Beezhold, D. H., & Schmechel, D. (2006). Airborne fungal fragments and allergenicity. Medical Mycology, 44(1), S245–S255.CrossRefGoogle Scholar
  29. Grewling, Ł., Nowak, M., Szymanska, A., Kostecki, Ł., & Bogawski, P. (2018). Temporal variability in the allergenicity of airborne Alternaria spores. Medical Mycology, 2, 1–9.Google Scholar
  30. Grinn-Gofroń, A., & Mika, A. (2008). Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia, 24(2), 89.CrossRefGoogle Scholar
  31. Grundström, M., Dahl, Å., Ou, T., Chen, D., & Pleijel, H. (2017). The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities. Aerobiologia, 33(4), 457–471.CrossRefGoogle Scholar
  32. Gutiérrez-Rodríguez, A., Postigo, I., Guisantes, J. A., Suñén, E., & Martínez, J. (2011). Identification of allergens homologous to Alt a 1 from Stemphylium botryosum and Ulocladium botrytis. Medical Mycology, 49(8), 892–896.Google Scholar
  33. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  34. Hong, S. G., Cramer, R. A., Lawrence, C. B., & Pryor, B. M. (2005). Alt a 1 allergen homologs from Alternaria and related taxa: Analysis of phylogenetic content and secondary structure. Fungal Genetics and Biology, 42(2), 119–129.CrossRefGoogle Scholar
  35. Hyde, H. A., Richards, M., & Williams, D. A. (1956). Allergy to mould spores in Britain. British Medical Journal, 1(4972), 886–890.CrossRefGoogle Scholar
  36. Kasprzyk, I., Rodinkova, V., Šaulienė, I., Ritenberga, O., Grinn-Gofron, A., Nowak, M., et al. (2015). Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environmental Science and Pollution Research, 22(12), 9260–9274.CrossRefGoogle Scholar
  37. Kasprzyk, I., Sulborska, A., Nowak, M., Szymanska, A., Kaczmarek, J., Haratym, W., et al. (2013). Fluctuation range of the concentration of airborne Alternaira conidiospores sampled at different geographical locations in Poland (2010–2011). Acta Agrobotanica, 66(1), 65–76.CrossRefGoogle Scholar
  38. Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.CrossRefGoogle Scholar
  39. Kosiak, B., Torp, M., Skjerve, E., & Andersen, B. (2004). Alternaria and Fusarium in Norwegian grains of reduced quality—a matched pair sample study. International Journal of Food Microbiology, 93(1), 51–62.CrossRefGoogle Scholar
  40. Larsen, L., & Gravesen, S. (1991). Seasonal variation of outdoor airborne viable microfungi in Copenhagen. Denmark. Grana, 30(2), 467–471.CrossRefGoogle Scholar
  41. Larsen, L. S. (1981). A three-year-survey of microfungi in the air of Copenhagen 1977–79. Allergy, 36(1), 15–22.CrossRefGoogle Scholar
  42. Last, F. T. (1955). The spore content of air within and above mildew-infected cereal crops. Transactions of the British Mycological Society, 38(4), 453–464.CrossRefGoogle Scholar
  43. Lawrence, D. P., Gannibal, P. B., Peever, T. L., & Pryor, B. M. (2013). The sections of Alternaria: Formalizing species-group concepts. Mycologia, 105(3), 530–546.CrossRefGoogle Scholar
  44. Lawrence, D. P., Rotondo, F., & Gannibal, P. B. (2015). Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycological Progress, 15(1), 3.CrossRefGoogle Scholar
  45. Leiminger, J., & Hausladen, H. (2012). Early blight control in potato using disease-orientated threshold values. Plant Disease, 96(1), 124–130.CrossRefGoogle Scholar
  46. Levetin, E. (2004). Methods for aeroallergen sampling. Current Allergy and Asthma Reports, 4(5), 376–383.CrossRefGoogle Scholar
  47. Levetin, E., Horner, W. E., Scott, J. A., Barnes, C., Baxi, S., Chew, G. L., et al. (2016). Taxonomy of allergenic fungi. The Journal of Allergy and Clinical Immunology in Practice, 4(3), 375–385.CrossRefGoogle Scholar
  48. Logrieco, A., Bottalico, A., Mulé, G., Moretti, A., & Perrone, G. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some mediterranean crops. European Journal of Plant Pathology, 109(7), 645–667.CrossRefGoogle Scholar
  49. Logrieco, A., Bottalico, A., Solfrizzo, M., & Mule, G. (1990). Incidence of Alternaria species in grains from mediterranean countries and their ability to produce mycotoxins. Mycologia, 82(4), 501–505.CrossRefGoogle Scholar
  50. Logrieco, A., Moretti, A., & Solfrizzo, M. (2009). Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin Journal, 2(2), 129–140.CrossRefGoogle Scholar
  51. Lôiveke, H., Ilumäe, E., & Laitamm, H. (2004). Microfungi in grain and grain feeds and their potential toxicity. Agronomy Research, 2(2), 195–205.Google Scholar
  52. Maya-Manzano, J. M., Muñoz-Triviño, M., Fernández-Rodríguez, S., Silva-Palacios, I., Gonzalo-Garijo, A., & Tormo-Molina, R. (2016). Airborne Alternaria conidia in Mediterranean rural environments in SW of Iberian Peninsula and weather parameters that influence their seasonality in relation to climate change. Aerobiologia, 32(1), 95–108.CrossRefGoogle Scholar
  53. Mercado Vergnes, D., Renard, M.-E., Duveiller, E., & Maraite, H. (2006). Identification of Alternaria spp. on wheat by pathogenicity assays and sequencing. Plant Pathology, 55(4), 485–493.CrossRefGoogle Scholar
  54. Mitakakis, T. Z., Clift, A., & McGee, P. A. (2001). The effect of local cropping activities and weather on the airborne concentration of allergenic Alternaria spores in rural Australia. Grana, 40(4–5), 230–239.CrossRefGoogle Scholar
  55. Money, N. P. (2016). Chapter 3—Spore production, discharge, and dispersal. In S. C. Watkinson, L. Boddy, & N. P. Money (Eds.), The fungi (3rd ed., pp. 67–97). Boston: Academic Press.CrossRefGoogle Scholar
  56. Müller, M. E. H., & Korn, U. (2013). Alternaria mycotoxins in wheat—A 10 years survey in the Northeast of Germany. Food Control, 34(1), 191–197.CrossRefGoogle Scholar
  57. Nicolaisen, M., West, J. S., Sapkota, R., Canning, G. G. M., Schoen, C., & Justesen, A. F. (2017). Fungal Communities including plant pathogens in near surface air are similar across Northwestern Europe. Frontiers in Microbiology, 8, 1729.CrossRefGoogle Scholar
  58. Nielsen, B. J. (2015). Control of late blight (Phytophtora infestans) and early blight (Alternaria solani, A. alternata) in potatoes. Applied Crop Protection, 8, 69–120.Google Scholar
  59. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.CrossRefGoogle Scholar
  60. O’Hollaren, M. T., Yunginger, J. W., Offord, K. P., Somers, M. J., O’Connell, E. J., Ballard, D. J., et al. (1991). Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. New England Journal of Medicine, 324(6), 359–363.CrossRefGoogle Scholar
  61. Oliveira, M., Delgado, L., Ribeiro, H., & Abreu, I. (2010). Fungal spores from Pleosporales in the atmosphere of urban and rural locations in Portugal. Journal of Environmental Monitoring, 12(5), 1187–1194.CrossRefGoogle Scholar
  62. Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25(2), 85–98.CrossRefGoogle Scholar
  63. Olsen, Y., Begovic, T., Skjøth, C. A., Rasmussen, K., Gosewinkel, U., Hertel, O., et al. (2019). Grain harvesting as a local source of Cladosporium spp. in Denmark. Aerobiologia.  https://doi.org/10.1007/s10453-018-09556-w.CrossRefGoogle Scholar
  64. Pedersen, C. Å. (2012). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersen (Ed.), Oversigt over Landsforsøgene 2012. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Vidensentret for Landbrug: Aarhus, Denmark.Google Scholar
  65. Pedersen, C. Å. (2013). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersen (Ed.), Oversigt over Landsforsøgene 2013. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Videcentret for Landbrug: Aarhus, Denmark.Google Scholar
  66. Pedersen, C. Å. (2014). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersen (Ed.), Oversigt over Landsforsøgene 2014. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Videcentret for Landbrug P/S: Aarhus, Denmark.Google Scholar
  67. Pedersen, C. Å. (2015). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersesn (Ed.), Oversigt over landsforsøgene 2015. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. SEGES P/S: Aarhus, Denmark.Google Scholar
  68. Ram, R. S., & Chauhan, V. B. (1998). Assessment of yield losses due to Alternaria leaf spot in various cultivars of mustard and rapeseed. Journal of Mycopathological Research, 36(2), 109–111.Google Scholar
  69. Reponen, T., Seo, S.-C., Grimsley, F., Lee, T., Crawford, C., & Grinshpun, S. A. (2007). Fungal fragments in moldy houses: A field study in homes in New Orleans and Southern Ohio. Atmospheric Environment, 41(37), 8140–8149.CrossRefGoogle Scholar
  70. Reyes, E. S., de la Cruz, D. R., Merino, E., & Sánchez, J. S. (2009). Meteorological and agricultural effects on airborne Alternaria and Cladosporium spores and clinical aspects in Valladolid [Spain]. Annals of Agricultural and Environmental Medicine, 16(1), 53–61.Google Scholar
  71. RodrÍGuez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507.CrossRefGoogle Scholar
  72. Rotem, J. (1994). The genus Alternaria: Biology, epidemiology, and pathogenicity. USA: American Phytopathological Society.Google Scholar
  73. Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84(1), 88–99.CrossRefGoogle Scholar
  74. Sadyś, M., Skjøth, C. A., & Kennedy, R. (2015). Determination of Alternaria spp. habitats using 7-day volumetric spore trap, hybrid single particle lagrangian integrated trajectory model and geographic information system. Urban Climate, 14, 429–440.CrossRefGoogle Scholar
  75. Sáenz-de-Santamaría, M., Postigo, I., Gutierrez-Rodríguez, A., Cardona, G., Guisantes, J. A., Asturias, J., et al. (2006). The major allergen of Alternaria alternata (Alt a 1) is expressed in other members of the Pleosporaceae family. Mycoses, 49(2), 91–95.CrossRefGoogle Scholar
  76. Saharan, G. S., Meena, P. D., & Mehta, N. (2016). Alternaria diseases of crucifers: Biology, ecology and disease management. Hoboken: Wiley.CrossRefGoogle Scholar
  77. Savage, D., Barbetti, M. J., MacLeod, W. J., Salam, M. U., & Renton, M. (2012). Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Microbial Ecology, 63(3), 578–585.CrossRefGoogle Scholar
  78. Ščevková, J., Dušička, J., Mičieta, K., & Somorčík, J. (2016). The effects of recent changes in air temperature on trends in airborne Alternaria, Epicoccum and Stemphylium spore seasons in Bratislava (Slovakia). Aerobiologia, 32(1), 69–81.CrossRefGoogle Scholar
  79. Semple, S. (2005). Assessing occupational and environmental exposure. Occupational Medicine, 55(6), 419–424.CrossRefGoogle Scholar
  80. Skjøth, C., Bilinska, D., Werner, M., Malkiewicz, M., Adams-Groom, B., Kryza, M., et al. (2015). Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (Wroclaw) during 2005–2014. Acta Agrobotanica, 68(4), 315–324.  https://doi.org/10.5586/aa.2015.044.CrossRefGoogle Scholar
  81. Skjøth, C. A., Damialis, A., Belmonte, J., De Linares, C., Fernández-Rodríguez, S., Grinn-Gofroń, A., et al. (2016). Alternaria spores in the air across Europe: Abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia, 32(1), 3–22.CrossRefGoogle Scholar
  82. Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150(9), 1203–1210.CrossRefGoogle Scholar
  83. Skjøth, C. A., Sommer, J., Frederiksen, L., & Gosewinkel Karlson, U. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12(22), 11107–11123.CrossRefGoogle Scholar
  84. Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37(8), 1204–1212.CrossRefGoogle Scholar
  85. Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., et al. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology, 64(4), 973–985.CrossRefGoogle Scholar
  86. Song, F., Tian, X., Fan, X., & He, X. (2010). Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia, 102(1), 20–26.CrossRefGoogle Scholar
  87. Stach, A., Smith, M., Skjøth, C. A., & Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznań (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51(4), 275–286.CrossRefGoogle Scholar
  88. Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077.CrossRefGoogle Scholar
  89. Stennett, P., & Beggs, P. (2004). Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. International Journal of Biometeorology, 49(2), 98–105.CrossRefGoogle Scholar
  90. Stepalska, D., & Wolek, J. (2009). The estimation of fungal spore concentrations using two counting methods. Acta Agrobotanica, 62(2), 117–123.CrossRefGoogle Scholar
  91. Stieb, D. M., Beveridge, R. C., Brook, J. R., Smith-Doiron, M., Burnett, R. T., Dales, R. E., et al. (2000). Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. Journal of Exposure Science & Environmental Epidemiology, 10(5), 461–477.CrossRefGoogle Scholar
  92. Theilgaard, J. (2007). Det danske vejr. Denmark: Gyldendal.Google Scholar
  93. Twaroch, T. E., Curin, M., Valenta, R., & Swoboda, I. (2015). Mold allergens in respiratory allergy: From structure to therapy. Allergy Asthma Immunol Res, 7(3), 205–220.CrossRefGoogle Scholar
  94. Van der Waals, J. E., Korsten, L., & Aveling, T. A. S. (2001). A review of early blight of potato. African Plant Protection, 7(2), 91–102.Google Scholar
  95. Vázquez de Aldana, B. R., Bills, G., & Zabalgogeazcoa, I. (2013). Are endophytes an important link between airborne spores and allergen exposure? Fungal Diversity, 60(1), 33–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Public HealthAarhus UniversityÅrhusDenmark
  2. 2.Department of Environmental Science – Environmental Microbiology and BiotechnologyAarhus UniversityRoskildeDenmark
  3. 3.School of Science and the EnvironmentUniversity of WorcesterWorcesterUK
  4. 4.Department of Environmental Science – Atmospheric Chemistry and PhysicsAarhus UniversityRoskildeDenmark
  5. 5.The Asthma and Allergy AssociationRoskildeDenmark

Personalised recommendations