Aerofloral investigation and allergenic potentials of two dominant airborne pollen types at selected sites in South-western Nigeria

Abstract

Airborne pollen triggers immune cells to release inflammatory chemical mediators, inducing respiratory conditions among susceptible individuals. This present study aimed at investigating the monthly depositional rate of pollen and fern spores with the aid of a modified Tauber pollen sampler, for a period of 1 year, examining airborne pollen–vegetation relationships and allergenic potentials of dominant airborne pollen types at selected study sites in Osun and Ogun states, South-western Nigeria. This involved collection, acetolysis and microscopy of residual solutions. Plants within the immediate vegetation of these sites were enumerated. Crude protein contents were extracted from pollen of Tridax procumbens L. (dominant in Osun state) and Alchornea cordifolia (Schum. & Thonn.) Mull. Arg. (dominant in Osun and Ogun states), used in Mus musculus sensitization. Blood samples were obtained from the pre-orbital vein of M. musculus L., processed for haematological (differential and total white blood cell counts) and serological studies. ELISA was employed in measuring the levels of serological parameters: IgE and cytokines (TNF-α, IL-5 and IL-13). Statistical significance (P < .05) was tested in the correlation between the levels of haematological and serological parameters elicited by each test group, differences between the levels of haematological and serological parameters elicited by each test group and those of the control, as well as at varied sensitization periods. In the results obtained, airborne pollen types of A. cordifolia, T. procumbens, Elaeis guineensis Jacq. and Poaceae were dominant in Osun state; A. cordifolia, Senna sp. and Poaceae were dominant in Ogun state. Spores of Nephrolepis biserrata (Sw.) Schott, Pteris sp. and a trilete fern were also recovered. Some pollen types were produced by local plants at the study sites. Neutrophils, lymphocytes, monocytes and eosinophils were the identified differential white blood cells. Statistical significance was observed in the correlation between the levels of certain haematological and serological parameters elicited by the test groups, differences between the levels of certain haematological and serological parameters elicited by each test group and those of the control, as well as at some sensitization periods. Hair loss (alopecia) was observed on the skin of a M. musculus in the A. cordifolia test group. This study has identified potential pollen allergens at the study sites; hence, their allergenicity should be further conducted on humans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdulrahaman, A., Aruofor, O. S., Garuba, T., Kolawole, O. S., Olahan, G. S., & Oladele, F. A. (2015). Aeropalynological investigation of the University of Ilorin, Ilorin, Nigeria. Journal of Applied Science and Environmental Management, 19(1), 53–63.

    Google Scholar 

  2. Adekanmbi, O. H. (2009). Pollen grains of Asteraceae and analogous echinate grains. International Journal of Botany, 5(4), 295–300.

    Article  Google Scholar 

  3. Adekanmbi, O. H., & Ogundipe, O. T. (2009). Pollen grains of Lagos lagoon swamp and hinter-land vegetation-1. International Journal of Botany, 5, 270–278.

    Article  Google Scholar 

  4. Adekanmbi, O. H., & Ogundipe, O. T. (2010). Aeropalynological studies of the University of Lagos Campus, Nigeria. Notulae Scientia Biologicae, 2(4), 34–39.

    Article  Google Scholar 

  5. Adeniyi, T. A., Adeonipekun, P. A., Olowokudejo, J. D., & Idowu, S. A. (2014). Airborne pollen records of Shomolu local government area in Lagos State. Notulae Scientia Biologicae, 6(4), 428–432.

    Article  Google Scholar 

  6. Adeonipekun, A. P. (2012). Comparative aeropalynology of Ota, Nigeria. Journal of Ecology and the Natural Environment, 4(12), 314–320.

    Article  Google Scholar 

  7. Agwu, C. O. C., & Osibe, E. E. (1992). Airborne palynomorphs of Nsukka during the months of February–April, 1990. Nigerian Journal of Botany, 5, 177–185.

    Google Scholar 

  8. Ahlawat, M., Dahiya, P., & Chaudhary, D. (2013). Allergenic pollen in the atmosphere of Rohtak city, Haryana (India): A pioneer study. Aerobiologia. https://doi.org/10.1007/s10453-013-9323-1.

    Article  Google Scholar 

  9. Ajikah, L., Ogundipe, O. T., & Bamgboye, O. (2015). Palynological survey of airborne pollen and spores in the University of Lagos, Akoka campus, Southwestern Nigeria. Ife Journal of Science, 17(3), 643–655.

    Google Scholar 

  10. Ajikah, L. B., Alebiosu, O. S., Adekanmbi, O. H., Oshinlaja, E. O., & Ogundipe, O. T. (2017). Aeropalynological investigation of three local governments in Lagos, South West Nigeria. Nigerian Journal of Botany, 30(1), 107–119.

    Google Scholar 

  11. Alebiosu, O. S., Adekanmbi, O. H., Nodza, G. I., & Ogundipe, O. T. (2017). Aeropalynological study of two selected locations in North-Central Nigeria. Aerobiologia. https://doi.org/10.1007/s10453-017-9506-2.

    Article  Google Scholar 

  12. Association of Analytical Chemists. (1990). Official methods of analysis (13th ed.). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  13. Bastl, K., Kmenta, M., Pessi, A., Prank, M., Saarto, A., Sofiev, M., et al. (2016). First comparison of symptom data with allergen content (Bet v1 and Phl p5 measurements) and pollen data from four European regions during 2009–2011. Science of the Total Environment, 548, 229–235.

    Article  CAS  Google Scholar 

  14. Bettiol, J., Bartsch, P., Louis, R., de Groote, D., Gevaerts, Y., Louis, E., et al. (2000). Cytokine production from peripheral whole blood in atopic and non-atopic asthmatics relationship with blood and sputum eosinophilia and serum IgE levels. Allergy, 55(12), 1134–1141.

    Article  CAS  Google Scholar 

  15. Bosch, X., & Ramos-Casals, M. (2014). Granulocytes: Neutrophils, basophils, eosinophils. In N. Rose & I. Mackay (Eds.), The auto immune diseases (5th ed., pp. 201–211). Amsterdam: Elsevier.

    Google Scholar 

  16. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  17. Conejero, L., Hagaki, Y., Baeza, M. C., Varela-Nieto, I., & Zubeldia, J. M. (2007). Pollen induced airway inflammation, hyper-responsiveness and apoptosis in a murine model of allergy. Clinical and Experimental Allergy, 37, 331–338.

    Article  CAS  Google Scholar 

  18. Dalziel, J. M. (1937). The useful plants of West Tropical Africa. London: Crown Overseas Agents for the Colonies.

    Google Scholar 

  19. Dearman, R. J., Hope, J. C., Hopkins, S. J., Debicki, R. J., & Kimber, I. (1993). Interleukin (IL-6) production by lymph node cells: An alternative endpoint for the local lymph node assay. Toxicology Methods, 3, 268–278.

    Article  CAS  Google Scholar 

  20. Dearman, R. J., Scholes, E. W., Ramdin, L. S. P., Basketter, D. A., & Kimber, I. (1994). The local lymph node assay: An interlaboratory evaluation of Interleukin 6 (IL-6) production by draining lymph node cells. Journal of Applied Toxicology, 14, 287–291.

    Article  CAS  Google Scholar 

  21. Dedeke, G. A., Ademolu, K. A., Ogunnaike, O., Fadeyi, M. O., & Otti, C. N. (2011). Impact of human urine contamination on soil biota. In Proceedings of the environmental management conference. Federal University of Agriculture, Abeokuta.

  22. Eastham, R. D., & Slade, R. R. (1992). Clinical Haematology (7th ed., pp. 83–106). Oxford, England: Butterworth Heinemann Ltd. ISBN:0750613394.

    Google Scholar 

  23. Erdtman, G. (1969). Handbook of palynology. Copenhagen: Munksgaard.

    Google Scholar 

  24. Essien, B. C., & Agwu, C. O. C. (2013). Aeropalynological study of Anyigba, Kogi State, Nigeria. Standard Scientific Research and Essays, 1(13), 347–351.

    Google Scholar 

  25. Essien, B. C., & Aniama, S. O. (2014). Environmental impact analysis through aeropalynology, Kogi State, Nigeria. Standard Scientific Research and Essays, 2(3), 60–64.

    Google Scholar 

  26. Ezike, D. N., Nnamani, C. V., Ogundipe, O. T., & Adekanmbi, O. H. (2016). Airborne pollen and fungal spores in Garki, Abuja (North-Central Nigeria). Aerobiologia. https://doi.org/10.1007/s10453-016-9443-5.

    Article  Google Scholar 

  27. Gabrielsson, S., Soderlund, A., Paulie, S., Rak, S., Vander Pouw Kraan, T. C. T. M., & Troye-Blomberg, M. (1998). Increased frequencies of allergen-induced interleukin-13-producing cells in atopic individuals during the pollen season. Scandinavian Journal of Immunology, 48, 429–435.

    Article  CAS  Google Scholar 

  28. Gosling, W. D., Miller, C. S., & Livingstone, D. A. (2013). Atlas of the tropical West Africa pollen flora. Review of Paleobotany and Palynology, 199, 1–135.

    Article  Google Scholar 

  29. Greiner, A. N., Hellings, P. W., Rotiroti, G., & Scadding, G. K. (2011). Allergic rhinitis. Lancet, 378, 2112–2122.

    Article  Google Scholar 

  30. Hutchinson, J., & Dalziel, J. M. (1954). Flora of West Tropical Africa (Vol. vols 1 and 2). London: The White Friars Press Ltd.

    Google Scholar 

  31. International Study of Asthma and Allergies in Childhood. (1998). World wide variation in prevalence of symptoms of asthma, allergic rhino-conjunctivitis, and atopic eczema. ISSAC Steering Committee, 351, 1225–1232.

    Google Scholar 

  32. Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2005). Immunobiology: The immune system in health and disease (6th ed.). New York, USA and Oxon, UK: Garland Science Publishing. ISBN:0815341016

    Google Scholar 

  33. Kato, G., Takahashi, K., Tashiro, H., Kurata, K., Shirai, H., Kimura, S., et al. (2014). β2 adrenergic agonist attenuates house dust mite-induced allergic airway inflammation through dendritic cells. BMC Immunology, 15, 39.

    Article  CAS  Google Scholar 

  34. Keay, R. W. J., Onochie, C. F. A., & Standfield, D. P. (1964). Nigerian Trees (Vol. 1). Ibadan: Department of Forest Research.

    Google Scholar 

  35. Moverare, R., Elfman, L., Stalenheim, G., & Bjornsson, E. (2000). Study of the Th1/Th2 balance, including IL-10 production, in cultures of peripheral blood mononuclear cells from birch-pollen-allergic patients. Allergy, 55, 171–175.

    Article  CAS  Google Scholar 

  36. Nadimi, A. E., Ahmadi, J., & Mehrabian, M. (2008). Peripheral eosinophil count and allergy in patients with coronary artery disease. Acta Medica Indonesiana, 40(2), 74–77.

    Google Scholar 

  37. National Population Census. (2006). Federal Republic of Nigeria Official Gazzete, Lagos, Nigeria, 94(4), 10–12.

  38. Njokuocha, R. C. (2006). Airborne pollen grains in Nsukka, Nigeria. Grana, 45, 73–80.

    Article  Google Scholar 

  39. Oke, S. O., & Isichei, A. O. (1997). Floristic composition and structure of the fallow vegetation in Ile-Ife Area, Southwestern Nigeria. Nigeria Journal of Botany, 10, 37–50.

    Google Scholar 

  40. Olajuyigbe, A. O., Alinaitwe, P., Adegboyega, S. A., & Salubi, E. (2012). Spatial analysis of factors responsible for incidence of water borne diseases in Ile-Ife, Nigeria. Journal of Sustainable Society, 1(4), 96–113.

    Google Scholar 

  41. Razi, E., & Moosavi, G. A. (2010). Serum total IgE levels and total eosinophil counts: relationship with treatment response in patients with acute asthma. Jornal Brasileiro de Pneumologia, 36(1), 23–28.

    Article  Google Scholar 

  42. Repa, A., Wild, C., Hufnagl, K., Winkler, B., Bohle, B., Pollak, A., et al. (2004). Influence of the route of sensitization on local and systemic immune responses in a murine model of type 1 allergy. Clinical and Experimental Immunology, 137(1), 12–18.

    Article  CAS  Google Scholar 

  43. Sanderson, C. J. (1992). Interleukin-5, eosinophils, and disease. Blood, 79, 3101–3109.

    CAS  Google Scholar 

  44. Ščevkova, J., Dušička, J., Hrubiško, M., & Mičieta, K. (2015). Influence of airborne pollen counts and length of pollen season length of selected allergenic plants on the concentration of sIgE antibodies on the population of Bratislava, Slovakia. Annals of Agricultural and Environmental Medicine, 22(3), 451–455.

    Article  CAS  Google Scholar 

  45. Senjobi, B. A., & Ogunkunle, O. A. (2010). Effect of land use on soil degradation and soil productivity decline on Alfisols and Ultisols in Ogun State in South Western, Nigeria. Agriculturae Conspectus Scientificus, 75(1), 9–19.

    Google Scholar 

  46. Singh, A. B., & Dahiya, P. (2008). Aerobiological researches on pollen and fungi in India during the last fifty years: An overview. Indian Journal of Allergy and Asthma Immunology, 22(1), 27–38.

    Google Scholar 

  47. Singh, A. B., & Kumar, P. (2004). Aerial pollen diversity in India and their clinical significance in allergic diseases. Indian Journal of Clinical Biochemistry, 19(2), 190–201.

    Article  CAS  Google Scholar 

  48. Singh, A. B., & Mathur, C. (2012). An aerobiological perspective in allergy and asthma. Asia Pacific Allergy, 2(3), 210–222.

    Article  Google Scholar 

  49. Soladoye, M. O., Osipitan, A. A., Sonibare, M. A., & Chukwuma, E. C. (2010). From vagabonds to ethnobotanical relevance: Weeds of the campus sites of Olabisi Onabanjo University, Ago-Iwoye, Nigeria. Ethnobotanical Leaflets, 14, 546–558.

    Google Scholar 

  50. Sowunmi, M. A. (1973). Pollen grains of Nigerian plants. Grana, 13(3), 145–186.

    Article  Google Scholar 

  51. Sowunmi, M. A. (1995). Pollen of Nigerian plants. Grana, 34(2), 120–141.

    Article  Google Scholar 

  52. Wills-Karp, M. (1999). Immunologic basis of antigen-induced airway hyperresponsiveness. Annual Review of Immunology, 17, 255–281.

    Article  CAS  Google Scholar 

  53. World Health Organization. (1980). Manual of basic techniques for a Health laboratory: Part III. Haematology (pp. 397–406). World Health Organization, Geneva, Switzerland. Accent/Index Printers, England.

  54. Ye, S. T., Zhang, J. T., Qiao, B. S., & Lu, Y. G. (1988). Airborne and allergenic pollen grains in China (1st ed.). Beijing: Scientific Press.

    Google Scholar 

Download references

Acknowledgements

The invaluable support from TET fund in Nigeria for the sponsorship of this research through an award of grant is highly appreciated. The authors wish to thank Dr. Nnamdi Amaeze (Department of Zoology, University of Lagos) for his immense assistance in the identification of mice and Mr. Samuel Akindele (Department of Biochemistry, Nigerian Institute of Medical Research) for his guidance in the execution of the allergenicity study. We sincerely appreciate the efforts of Dr. Olubunmi Oyesiku (Department of Plant Science, Olabisi Onabanjo University, Ogun state) and Mr. Michael Akinropo (Department of Botany, Obafemi Awolowo University, Osun state) in the monthly collection of aerosamples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. H. Adekanmbi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adekanmbi, O.H., Alebiosu, O.S. & Adeiga, A.A. Aerofloral investigation and allergenic potentials of two dominant airborne pollen types at selected sites in South-western Nigeria. Aerobiologia 35, 27–44 (2019). https://doi.org/10.1007/s10453-018-9533-7

Download citation

Keywords

  • Pollen types
  • Mus musculus
  • Sensitization
  • Allergy
  • South-western Nigeria