Skip to main content

Diurnal patterns of airborne algae in the Hawaiian Islands: a preliminary study

Abstract

Although the literature on the diversity of airborne algal communities in various locations around the world is increasing, little is known about their temporal and spatial patterns. We compared airborne algal communities from Honolulu, Hawai‘i, USA, over three 24-h sampling periods to examine diurnal patterns in diversity and abundance. Using a culture-based approach, 192 algal colonies were characterized and identified as 31 operational taxonomic units. A combination of microscopy and Sanger sequencing (of the UPA marker) was used for characterizations. More airborne algal colonies were identified from nighttime collections (127 of 192 colonies) than daytime collections (65 of 192 colonies) (p < 0.0001). Similarly, 95% of the daytime collections were Cyanobacteria, and 87% of the nighttime collections were Chlorophyta, and the trends of more Cyanobacteria being collected during the day and more Chlorophyta at night were significant (p < 0.0001). Meteorological analyses for the sampling periods indicated that air masses sampled during the three trials consistently arrived in the Hawaiian Islands on a northeast trade wind pattern, but with different origins in the Pacific Ocean, and that low-to-trace levels of rain fell during the sampling periods. Land breeze and sea breeze effects, which are common temperature-driven phenomena on tropical islands, may have played a role in the diurnal pattern observed in the current study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Brown, R. M., Jr. (1971). The distribution of airborne algae and fern spores across the island of Oahu, Hawaii. In B. C. Parker & R. M. Brown Jr. (Eds.), Contributions in phycology (pp. 175–188). Lawrence, KS: Allen Press.

    Google Scholar 

  • Brown, R. M., Larson, D. A., & Bold, H. C. (1964). Airborne algae: Their abundance and heterogeneity. Science, 143, 583–585.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

    Article  CAS  Google Scholar 

  • Carson, J. L., & Brown, R. M. (1976). The correlation of soil algae, airborne algae and fern spores with meteorological conditions on the island of Hawaii. Pacific Science, 30, 197–205.

    Google Scholar 

  • Conklin, K. Y., Kurihara, A., & Sherwood, A. R. (2009). A molecular method for identification of the morphologically plastic invasive alga genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. Journal of Applied Phycology, 21, 691–699.

    Article  CAS  Google Scholar 

  • Darwin, C. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N. (2nd ed.), London: John Murray (The Voyage of the Beagle) Retrieved on April 30, 2007.

  • De Clerck, O., Guiry, M. D., Leliaert, F., Samyn, Y., & Verbruggen, H. (2013). Algal taxonomy: A road to nowhere? Journal of Phycology, 49, 215–225.

    Article  Google Scholar 

  • Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 64, 1–58.

    Article  Google Scholar 

  • Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., & et al. (2010). Geneious v5.3.6. Available from http://www.geneious.com. Accessed 22 July 2017.

  • Ettl, H., & Gärtner, G. (1988). Chlorophyta II: Tetrasporales, Chlorococcales, Gloeodendrales. Süßwasserflora von Mitteleuropa, Band 10. Jena: Gustav Fischer Verlag.

  • Freshwater, D. W., Idol, J. N., Parham, S. L., Fernández-García, C., León, N., Gabrielson, P. W., et al. (2017). Molecular assisted identification reveals hidden red algae diversity from the Burica Peninsula, Pacific Panama. Diversity, 9, 19.

    Article  CAS  Google Scholar 

  • Garza, J. A., Chu, P.-S., Norton, C. W., & Schroeder, T. A. (2012). Changes of the prevailing trade winds over the islands of Hawaii and the North Pacific. Journal of Geophysical Research, 117, D11109.

    Article  Google Scholar 

  • Genitsaris, S., Kormas, K., Christaki, U., Monchy, S., & Moustaka-Gouni, M. (2014). Molecular diversity reveals previously undetected air-dispersed protist colonists in a Mediterranean area. Science of the Total Environment, 478, 70–79.

    Article  CAS  Google Scholar 

  • Genitsaris, S., Moustaka-Gouni, M., & Kormas, K. (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3, 772–787.

    Google Scholar 

  • John, D. M., Whitton, B. A., & Brook, A. J. (Eds.). (2011). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press.

    Google Scholar 

  • Komárek, J., & Anagnostidas, K. (1999). Cyanoprokaryota 1. Teil: Chroococcales. Süßwasserflora von Mitteleuropa, Band 19/1. Heidelberg: Spektrum Akademischer Verlag.

  • Komárek, J., & Anagnostidas, K. (2005). Cyanoprokaryota 2. Teil: Oscillatoriales. Süßwasserflora von Mitteleuropa, Band 19/2. Heidelberg: Spektrum Akademischer Verlag.

  • Lee, T. F., & Eggleston, P. M. (1989). Airborne algae and cyanobacteria. Grana, 28, 63–66.

    Article  Google Scholar 

  • Leopold, L. B. (1949). The interaction of trade wind and sea breeze, Hawaii. Journal of Meteorology, 6, 312–320.

    Article  Google Scholar 

  • Letendu, G., Wubet, T., Chatzinotas, A., Wilhelm, C., Buscot, F., & Schlegel, N. (2014). Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: A multiple barcoding approach. Molecular Ecology, 23, 3341–3355.

    Article  CAS  Google Scholar 

  • Mahowald, N. (2011). Aerosol indirect effect on biogeochemical cycles and climate. Science, 334, 794–796.

    Article  CAS  Google Scholar 

  • Ng, E. H., Chu, W. L., & Ambu, S. (2011). Occurrence of airborne algae within the township of Bukit Jalil in Kuala Lumpur, Malaysia. Grana, 50, 217–227.

    Article  Google Scholar 

  • Prescott, G. W. (1951). Algae of the western great lakes area. Dubuque: Wm. C. Brown Publishers.

    Google Scholar 

  • Presting, G. G. (2006). Identification of conserved regions in the plastid genome: Implications for DNA barcoding and biological function. Canadian Journal of Botany, 84, 1434–1443.

    Article  CAS  Google Scholar 

  • Roy-Ocotla, G., & Carrera, J. (1993). Aeroalgae: Response to some aerobiological questions. Grana, 32, 48–56.

    Article  Google Scholar 

  • Schlichting, H. E., Jr. (1961). Viable species of algae and protozoa in the atmosphere. Lloydia, 24, 81–88.

    Google Scholar 

  • Schlichting, H. E., Jr. (1964). Meteorological conditions affecting the dispersal of airborne algae and protozoa. Lloydia, 27, 64–78.

    Google Scholar 

  • Schlichting, H. E., Jr. (1974). Periodicity and seasonality of airborne algae and protozoa. In H. Leith (Ed.), Phenology and seasonality modelling (pp. 407–413). Berlin: Springer.

    Chapter  Google Scholar 

  • Schlichting, H. E. (2000). Hawaii: An ideal model for international aerobiological research. Aerobiologia, 16, 335–337.

    Article  Google Scholar 

  • Schlichting, H. E., Jr., Raynor, G. S., & Solomon, W. R. (1971). Recommendations for aerobiology sampling in a coherent monitoring system. Algae and protozoa in the atmosphere. In W. S. Benninghoff & R. L. Edmonds (Eds.), US/IBP aerobiology handbook III (pp. 60–61). Ann Arbor: University of Michigan.

    Google Scholar 

  • Sharma, N. K., Rai, A. K., Singh, S., & Brown, R. M. (2007). Airborne algae: their present status and relevance. Journal of Phycology, 43, 615–627.

    Article  Google Scholar 

  • Sharma, N. K., & Singh, S. (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50, 468–473.

    Article  CAS  Google Scholar 

  • Sharma, N. K., Singh, S., & Rai, A. K. (2006). Diversity and seasonal variation in viable algal particles in a subtropical Indian City. Environmental Research, 102, 252–259.

    Article  CAS  Google Scholar 

  • Sherwood, A. R., Carlile, A. L., Hall, J. D., & Neumann, J. M. (2013). Freshwater algae associated with high elevation bogs in the Hawaiian Islands. Bishop Museum Occasional Papers, 114, 21–31.

    Google Scholar 

  • Sherwood, A. R., Carlile, A. L., & Neumann, J. M. (2012). Freshwater algae associated with taro cultivation in the Hawaiian Islands. Bishop Museum Occasional Papers, 113, 81–85.

    Google Scholar 

  • Sherwood, A. R., Carlile, A. L., Neumann, J. M., Kociolek, J. P., Johansen, J. R., Lowe, R. L., et al. (2014a). The Hawaiian Freshwater Algae Biodiversity Survey (2009–2014): Systematic and biogeographic trends with an emphasis on the macroalgae. BMC Ecology, 14, 28.

    Article  Google Scholar 

  • Sherwood, A. R., Conklin, K. Y., & Liddy, Z. J. (2014b). What’s in the air? Preliminary analyses of Hawaiian airborne algae and land plant spores reveal a diverse and abundant flora. Phycologia, 53, 579–582.

    Article  Google Scholar 

  • Sherwood, A. R., Dittbern, M. N., Johnston, E. T., & Conklin, K. Y. (2017). A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko‘olau mountain range on the island of O‘ahu, Hawai‘i. Journal of Phycology, 53, 437–445.

    Article  CAS  Google Scholar 

  • Sherwood, A. R., & Presting, G. G. (2007). Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 43, 605–608.

    Article  Google Scholar 

  • Smith, P. E. (1973). The effects of some air pollutants and meteorological conditions on airborne algae and protozoa. Air Pollution Control, 23, 876–880.

    Article  CAS  Google Scholar 

  • Steven, B., McCann, S., & Ward, N. L. (2012). Pyrosequencing of plastid 23S rRNA genes reveals diverse and dynamic cyanobacterial and algal populations in two eutrophic lakes. FEMS Microbiology Ecology, 82, 607–615.

    Article  CAS  Google Scholar 

  • Suutari, M., Majaneva, M., Fewer, D. P., Voirin, B., Aiello, A., Friedl, T., et al. (2010). Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evolutionary Biology, 10, 86.

    Article  CAS  Google Scholar 

  • Tesson, S. V. M., Skjoth, C. A., Santl-Temkiv, T., & Londahl, J. (2016). Airborne Microalgae: Insights, opportunities and challenges. Applied and Environmental Microbiology, 82, 1978–1991.

    Article  CAS  Google Scholar 

  • Tormo, R., Recio, D., Silva, I., & Munoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in southwest Spain. European Journal of Phycology, 36, 385–390.

    Article  Google Scholar 

  • van Overeem, M. A. (1936). A sampling apparatus for aeroplankton. Proceedings of the Royal Academy of Amsterdam, 33, 981–990.

    Google Scholar 

  • Wehr, J. D., & Sheath, R. G. (Eds.). (2003). Freshwater algae of North America. Boston: Academic Press.

    Google Scholar 

  • Woo, A. C., Brar, M. S., Chan, Y., Lau, M. C. Y., Leung, F. C. C., Scott, J. A., et al. (2013). Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 74, 291–300.

    Article  CAS  Google Scholar 

  • Yoon, T., Kang, H., Kang, C., Lee, S. H., Ahn, D., Park, H., et al. (2016). Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ, 4, e2115.

    Article  Google Scholar 

  • Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a U.S. National Science Foundation Research Experiences for Undergraduates award (REU: DNA-based Discoveries in Hawai‘i’s Biodiversity) to S. Kraft-Terry and S. Donachie at the University of Hawai‘i (NSF DBI-1560491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison R. Sherwood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

QIIME commands for betadiversity analyses of diurnal patterns of Hawaiian airborne algae (DOCX 43 kb)

Online Resource 2

Collection of airborne Chlorophyta (dark) versus Cyanobacteria (light) for daytime intervals versus nighttime intervals, for the three trials of the study (PPTX 49 kb)

Online Resource 3

Total number of airborne algal colonies collected over the three trials, by two-hour sampling period; Chlorophyta = dark, Cyanobacteria = light (PPTX 47 kb)

Online Resource 4

HY-SPLIT model output for air mass back trajectories associated with the first sampling period (14–15 June 2017); red = 50 m above sea level, blue = 500 m, and green = 1000 m (PPTX 4367 kb)

Online Resource 5

HY-SPLIT model output for air mass back trajectories associated with the second sampling period (18–19 June 2017); red = 50 m above sea level, blue = 500 m, and green = 1000 m (PPTX 4244 kb)

Online Resource 6

a) HY-SPLIT model output for air mass back trajectories associated with the third sampling period (21–22 June 2017); red = 50 m above sea level, blue = 500 m, and green = 1000 m (PPTX 3792 kb)

Online Resource 7

Wind speed (in kph; top graph) and air temperature (in degrees Celsius; bottom graph) during the three trials (PPTX 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, H.W., Wade, R.M. & Sherwood, A.R. Diurnal patterns of airborne algae in the Hawaiian Islands: a preliminary study. Aerobiologia 34, 363–373 (2018). https://doi.org/10.1007/s10453-018-9519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9519-5

Keywords

  • Chlorophyta
  • Cyanobacteria
  • Green algae
  • Trade winds
  • Universal Plastid Amplicon