, Volume 34, Issue 3, pp 363–373 | Cite as

Diurnal patterns of airborne algae in the Hawaiian Islands: a preliminary study

  • Hans W. Singh
  • Rachael M. Wade
  • Alison R. SherwoodEmail author
Original Paper


Although the literature on the diversity of airborne algal communities in various locations around the world is increasing, little is known about their temporal and spatial patterns. We compared airborne algal communities from Honolulu, Hawai‘i, USA, over three 24-h sampling periods to examine diurnal patterns in diversity and abundance. Using a culture-based approach, 192 algal colonies were characterized and identified as 31 operational taxonomic units. A combination of microscopy and Sanger sequencing (of the UPA marker) was used for characterizations. More airborne algal colonies were identified from nighttime collections (127 of 192 colonies) than daytime collections (65 of 192 colonies) (p < 0.0001). Similarly, 95% of the daytime collections were Cyanobacteria, and 87% of the nighttime collections were Chlorophyta, and the trends of more Cyanobacteria being collected during the day and more Chlorophyta at night were significant (p < 0.0001). Meteorological analyses for the sampling periods indicated that air masses sampled during the three trials consistently arrived in the Hawaiian Islands on a northeast trade wind pattern, but with different origins in the Pacific Ocean, and that low-to-trace levels of rain fell during the sampling periods. Land breeze and sea breeze effects, which are common temperature-driven phenomena on tropical islands, may have played a role in the diurnal pattern observed in the current study.


Chlorophyta Cyanobacteria Green algae Trade winds Universal Plastid Amplicon 



This research was funded by a U.S. National Science Foundation Research Experiences for Undergraduates award (REU: DNA-based Discoveries in Hawai‘i’s Biodiversity) to S. Kraft-Terry and S. Donachie at the University of Hawai‘i (NSF DBI-1560491).

Supplementary material

10453_2018_9519_MOESM1_ESM.docx (44 kb)
Online Resource 1 QIIME commands for betadiversity analyses of diurnal patterns of Hawaiian airborne algae (DOCX 43 kb)
10453_2018_9519_MOESM2_ESM.pptx (50 kb)
Online Resource 2 Collection of airborne Chlorophyta (dark) versus Cyanobacteria (light) for daytime intervals versus nighttime intervals, for the three trials of the study (PPTX 49 kb)
10453_2018_9519_MOESM3_ESM.pptx (48 kb)
Online Resource 3 Total number of airborne algal colonies collected over the three trials, by two-hour sampling period; Chlorophyta = dark, Cyanobacteria = light (PPTX 47 kb)
10453_2018_9519_MOESM4_ESM.pptx (4.3 mb)
Online Resource 4 HY-SPLIT model output for air mass back trajectories associated with the first sampling period (14–15 June 2017); red = 50 m above sea level, blue = 500 m, and green = 1000 m (PPTX 4367 kb)
10453_2018_9519_MOESM5_ESM.pptx (4.1 mb)
Online Resource 5 HY-SPLIT model output for air mass back trajectories associated with the second sampling period (18–19 June 2017); red = 50 m above sea level, blue = 500 m, and green = 1000 m (PPTX 4244 kb)
10453_2018_9519_MOESM6_ESM.pptx (3.7 mb)
Online Resource 6 a) HY-SPLIT model output for air mass back trajectories associated with the third sampling period (21–22 June 2017); red = 50 m above sea level, blue = 500 m, and green = 1000 m (PPTX 3792 kb)
10453_2018_9519_MOESM7_ESM.pptx (45 kb)
Online Resource 7 Wind speed (in kph; top graph) and air temperature (in degrees Celsius; bottom graph) during the three trials (PPTX 45 kb)


  1. Brown, R. M., Jr. (1971). The distribution of airborne algae and fern spores across the island of Oahu, Hawaii. In B. C. Parker & R. M. Brown Jr. (Eds.), Contributions in phycology (pp. 175–188). Lawrence, KS: Allen Press.Google Scholar
  2. Brown, R. M., Larson, D. A., & Bold, H. C. (1964). Airborne algae: Their abundance and heterogeneity. Science, 143, 583–585.CrossRefGoogle Scholar
  3. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.CrossRefGoogle Scholar
  4. Carson, J. L., & Brown, R. M. (1976). The correlation of soil algae, airborne algae and fern spores with meteorological conditions on the island of Hawaii. Pacific Science, 30, 197–205.Google Scholar
  5. Conklin, K. Y., Kurihara, A., & Sherwood, A. R. (2009). A molecular method for identification of the morphologically plastic invasive alga genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. Journal of Applied Phycology, 21, 691–699.CrossRefGoogle Scholar
  6. Darwin, C. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N. (2nd ed.), London: John Murray (The Voyage of the Beagle) Retrieved on April 30, 2007.Google Scholar
  7. De Clerck, O., Guiry, M. D., Leliaert, F., Samyn, Y., & Verbruggen, H. (2013). Algal taxonomy: A road to nowhere? Journal of Phycology, 49, 215–225.CrossRefGoogle Scholar
  8. Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 64, 1–58.CrossRefGoogle Scholar
  9. Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., & et al. (2010). Geneious v5.3.6. Available from Accessed 22 July 2017.
  10. Ettl, H., & Gärtner, G. (1988). Chlorophyta II: Tetrasporales, Chlorococcales, Gloeodendrales. Süßwasserflora von Mitteleuropa, Band 10. Jena: Gustav Fischer Verlag.Google Scholar
  11. Freshwater, D. W., Idol, J. N., Parham, S. L., Fernández-García, C., León, N., Gabrielson, P. W., et al. (2017). Molecular assisted identification reveals hidden red algae diversity from the Burica Peninsula, Pacific Panama. Diversity, 9, 19.CrossRefGoogle Scholar
  12. Garza, J. A., Chu, P.-S., Norton, C. W., & Schroeder, T. A. (2012). Changes of the prevailing trade winds over the islands of Hawaii and the North Pacific. Journal of Geophysical Research, 117, D11109.CrossRefGoogle Scholar
  13. Genitsaris, S., Kormas, K., Christaki, U., Monchy, S., & Moustaka-Gouni, M. (2014). Molecular diversity reveals previously undetected air-dispersed protist colonists in a Mediterranean area. Science of the Total Environment, 478, 70–79.CrossRefGoogle Scholar
  14. Genitsaris, S., Moustaka-Gouni, M., & Kormas, K. (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3, 772–787.Google Scholar
  15. John, D. M., Whitton, B. A., & Brook, A. J. (Eds.). (2011). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press.Google Scholar
  16. Komárek, J., & Anagnostidas, K. (1999). Cyanoprokaryota 1. Teil: Chroococcales. Süßwasserflora von Mitteleuropa, Band 19/1. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  17. Komárek, J., & Anagnostidas, K. (2005). Cyanoprokaryota 2. Teil: Oscillatoriales. Süßwasserflora von Mitteleuropa, Band 19/2. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  18. Lee, T. F., & Eggleston, P. M. (1989). Airborne algae and cyanobacteria. Grana, 28, 63–66.CrossRefGoogle Scholar
  19. Leopold, L. B. (1949). The interaction of trade wind and sea breeze, Hawaii. Journal of Meteorology, 6, 312–320.CrossRefGoogle Scholar
  20. Letendu, G., Wubet, T., Chatzinotas, A., Wilhelm, C., Buscot, F., & Schlegel, N. (2014). Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: A multiple barcoding approach. Molecular Ecology, 23, 3341–3355.CrossRefGoogle Scholar
  21. Mahowald, N. (2011). Aerosol indirect effect on biogeochemical cycles and climate. Science, 334, 794–796.CrossRefGoogle Scholar
  22. Ng, E. H., Chu, W. L., & Ambu, S. (2011). Occurrence of airborne algae within the township of Bukit Jalil in Kuala Lumpur, Malaysia. Grana, 50, 217–227.CrossRefGoogle Scholar
  23. Prescott, G. W. (1951). Algae of the western great lakes area. Dubuque: Wm. C. Brown Publishers.Google Scholar
  24. Presting, G. G. (2006). Identification of conserved regions in the plastid genome: Implications for DNA barcoding and biological function. Canadian Journal of Botany, 84, 1434–1443.CrossRefGoogle Scholar
  25. Roy-Ocotla, G., & Carrera, J. (1993). Aeroalgae: Response to some aerobiological questions. Grana, 32, 48–56.CrossRefGoogle Scholar
  26. Schlichting, H. E., Jr. (1961). Viable species of algae and protozoa in the atmosphere. Lloydia, 24, 81–88.Google Scholar
  27. Schlichting, H. E., Jr. (1964). Meteorological conditions affecting the dispersal of airborne algae and protozoa. Lloydia, 27, 64–78.Google Scholar
  28. Schlichting, H. E., Jr. (1974). Periodicity and seasonality of airborne algae and protozoa. In H. Leith (Ed.), Phenology and seasonality modelling (pp. 407–413). Berlin: Springer.CrossRefGoogle Scholar
  29. Schlichting, H. E. (2000). Hawaii: An ideal model for international aerobiological research. Aerobiologia, 16, 335–337.CrossRefGoogle Scholar
  30. Schlichting, H. E., Jr., Raynor, G. S., & Solomon, W. R. (1971). Recommendations for aerobiology sampling in a coherent monitoring system. Algae and protozoa in the atmosphere. In W. S. Benninghoff & R. L. Edmonds (Eds.), US/IBP aerobiology handbook III (pp. 60–61). Ann Arbor: University of Michigan.Google Scholar
  31. Sharma, N. K., Rai, A. K., Singh, S., & Brown, R. M. (2007). Airborne algae: their present status and relevance. Journal of Phycology, 43, 615–627.CrossRefGoogle Scholar
  32. Sharma, N. K., & Singh, S. (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50, 468–473.CrossRefGoogle Scholar
  33. Sharma, N. K., Singh, S., & Rai, A. K. (2006). Diversity and seasonal variation in viable algal particles in a subtropical Indian City. Environmental Research, 102, 252–259.CrossRefGoogle Scholar
  34. Sherwood, A. R., Carlile, A. L., Hall, J. D., & Neumann, J. M. (2013). Freshwater algae associated with high elevation bogs in the Hawaiian Islands. Bishop Museum Occasional Papers, 114, 21–31.Google Scholar
  35. Sherwood, A. R., Carlile, A. L., & Neumann, J. M. (2012). Freshwater algae associated with taro cultivation in the Hawaiian Islands. Bishop Museum Occasional Papers, 113, 81–85.Google Scholar
  36. Sherwood, A. R., Carlile, A. L., Neumann, J. M., Kociolek, J. P., Johansen, J. R., Lowe, R. L., et al. (2014a). The Hawaiian Freshwater Algae Biodiversity Survey (2009–2014): Systematic and biogeographic trends with an emphasis on the macroalgae. BMC Ecology, 14, 28.CrossRefGoogle Scholar
  37. Sherwood, A. R., Conklin, K. Y., & Liddy, Z. J. (2014b). What’s in the air? Preliminary analyses of Hawaiian airborne algae and land plant spores reveal a diverse and abundant flora. Phycologia, 53, 579–582.CrossRefGoogle Scholar
  38. Sherwood, A. R., Dittbern, M. N., Johnston, E. T., & Conklin, K. Y. (2017). A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko‘olau mountain range on the island of O‘ahu, Hawai‘i. Journal of Phycology, 53, 437–445.CrossRefGoogle Scholar
  39. Sherwood, A. R., & Presting, G. G. (2007). Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 43, 605–608.CrossRefGoogle Scholar
  40. Smith, P. E. (1973). The effects of some air pollutants and meteorological conditions on airborne algae and protozoa. Air Pollution Control, 23, 876–880.CrossRefGoogle Scholar
  41. Steven, B., McCann, S., & Ward, N. L. (2012). Pyrosequencing of plastid 23S rRNA genes reveals diverse and dynamic cyanobacterial and algal populations in two eutrophic lakes. FEMS Microbiology Ecology, 82, 607–615.CrossRefGoogle Scholar
  42. Suutari, M., Majaneva, M., Fewer, D. P., Voirin, B., Aiello, A., Friedl, T., et al. (2010). Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evolutionary Biology, 10, 86.CrossRefGoogle Scholar
  43. Tesson, S. V. M., Skjoth, C. A., Santl-Temkiv, T., & Londahl, J. (2016). Airborne Microalgae: Insights, opportunities and challenges. Applied and Environmental Microbiology, 82, 1978–1991.CrossRefGoogle Scholar
  44. Tormo, R., Recio, D., Silva, I., & Munoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in southwest Spain. European Journal of Phycology, 36, 385–390.CrossRefGoogle Scholar
  45. van Overeem, M. A. (1936). A sampling apparatus for aeroplankton. Proceedings of the Royal Academy of Amsterdam, 33, 981–990.Google Scholar
  46. Wehr, J. D., & Sheath, R. G. (Eds.). (2003). Freshwater algae of North America. Boston: Academic Press.Google Scholar
  47. Woo, A. C., Brar, M. S., Chan, Y., Lau, M. C. Y., Leung, F. C. C., Scott, J. A., et al. (2013). Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 74, 291–300.CrossRefGoogle Scholar
  48. Yoon, T., Kang, H., Kang, C., Lee, S. H., Ahn, D., Park, H., et al. (2016). Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ, 4, e2115.CrossRefGoogle Scholar
  49. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyUniversity of Hawai‘iHonoluluUSA

Personalised recommendations