Skip to main content

Grain harvesting as a local source of Cladosporium spp. in Denmark


Cladosporium spp. are omnipresent moulds that grow on multiple substrates. Their spores possess a high allergenic potential. Currently, little is known about the incidence and the sources of airborne Cladosporium spores in Denmark. Air samples were collected between 31 May and 22 September 2015 in Viborg (Jutland, western Denmark). Eighteen out of 21 days with daily average concentrations exceeding the health-relevant threshold of 3000 Spores m−3, including the day with peak daily (13,553 Spores m−3) and 3-h concentrations (35,662 Spores m−3), occurred in August. The air masses that approached Viborg during the longest episode of elevated spore concentrations originated from northern Poland, the Baltics, passing over southern Sweden and the eastern Danish island of Zealand. The Cladosporium spore concentrations from Viborg were compared with the Cladosporium spore concentrations from the operational monitoring station in Copenhagen (Zealand, eastern Denmark). During the episode, concentrations in Viborg were on average 2268 spores m−3 higher than in Copenhagen. On the peak day between 8:00 and 15:00, concentrations in Viborg were 4–7 times higher than in Copenhagen, which we associated with grain crop harvesting in eastern Jutland. Elevated day time concentrations in Viborg on the days with daily average concentrations exceeding the threshold also indicate the local character of the sources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  • Aira, M.-J., Rodríguez-Rajo, F.-J., Fernández-González, M., Seijo, C., Elvira-Rendueles, B., Gutiérrez-Bustillo, M., et al. (2012). Cladosporium airborne spore incidence in the environmental quality of the Iberian Peninsula. Grana, 51(4), 293–304.

    Article  Google Scholar 

  • Awad, A. H. A. (2005). Vegetation: A source of air fungal bio-contaminant. Aerobiologia, 21(1), 53–61.

    Article  Google Scholar 

  • Bardei, F., Bouziane, H., Trigo, M. D. M., Ajouray, N., El Haskouri, F., & Kadiri, M. (2017). Atmospheric concentrations and intradiurnal pattern of Alternaria and Cladosporium conidia in Tétouan (NW of Morocco). Aerobiologia, 33(2), 221–228.

    Article  Google Scholar 

  • Denning, D. W., O’Driscoll, B. R., Hogaboam, C. M., Bowyer, P., & Niven, R. M. (2006). The link between fungi and severe asthma: a summary of the evidence. European Respiratory Journal, 27(3), 615–626.

    Article  CAS  Google Scholar 

  • Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Australian Meteorological Magazine, 47, 295–308.

    Google Scholar 

  • Galan, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerbiologia, 33, 293–295.

    Google Scholar 

  • Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34(3), 135–154.

    Article  CAS  Google Scholar 

  • Grinn-Gofroń, A., & Mika, A. (2008). Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia, 24(2), 89.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Kasprzyk, I., Kaszewski, B. M., Weryszko-Chmielewska, E., Nowak, M., Sulborska, A., Kaczmarek, J., et al. (2016). Warm and dry weather accelerates and elongates Cladosporium spore seasons in Poland. Aerobiologia, 32(1), 109–126.

    Article  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25(2), 85–98.

    Article  Google Scholar 

  • Pedersen, C. Å. (2015). Forsøgsarbejdet og vækstvilkår. In J. B. Pedersesn (Ed.), Oversigt over landsforsøgene 2015. Forsøg og undersøgelser i Dansk Landbrugsrådgivning. Aarhus, Denmark: SEGES P/S.

  • Peternel, R., Culig, J., & Hrga, I. (2003). Atmospheric concentrations of Cladosporium spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological factors. Annals of Agricultural and Environmental Medicine: AAEM, 11(2), 303–307.

    Google Scholar 

  • Sadyś, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2016). Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia, 32(4), 619–634.

    Article  Google Scholar 

  • Sindt, C., Besancenot, J.-P., & Thibaudon, M. (2016). Airborne Cladosporium fungal spores and climate change in France. Aerobiologia, 32(1), 53–68.

    Article  Google Scholar 

  • Skjøth, C. A., Sommer, J., Frederiksen, L., & Gosewinkel Karlson, U. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12(22), 11107–11123.

    Article  CAS  Google Scholar 

  • Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37(8), 1204–1212.

    Article  Google Scholar 

Download references


Data on agricultural grain fields land cover were provided by the Agricultural Agency under the Ministry of Environment and Food of Denmark. Meteorological data were provided by the Danish Meteorological Institute.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yulia Olsen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olsen, Y., Begovic, T., Skjøth, C.A. et al. Grain harvesting as a local source of Cladosporium spp. in Denmark. Aerobiologia 35, 373–378 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Aerobiology
  • Cladosporium spp.
  • Back trajectories
  • Airmass transport
  • Grain harvesting