Correlations between weather conditions and airborne pollen concentration and diversity in a Mediterranean high-altitude site disclose unexpected temporal patterns

Abstract

Relationships between meteorological factors and airborne pollen concentrations at high altitudes are virtually unknown. We used cross-correlation analyses to test the relationships between daily variation in meteorological factors (i.e. temperature, humidity and wind speed) and airborne pollen concentration, diversity (number of families and Shannon and Simpson diversity indices) and evenness (Pielou index) in an Apennine high-altitude site (Gran Sasso Massif, 2117 m elevation). In contrast to patterns observed at low altitudes, the temperature had a negative correlation with pollen abundance and diversity, whereas humidity had a positive correlation. The unexpected negative correlations with temperature can be explained with the particular position of our sampling site. Wind speed was positively correlated with pollen diversity and abundance in the short term, which can be explained by the fact that higher wind speed promotes both primary emission of pollen from the anthers and subsequent re-suspension. Evenness and wind speed were negatively correlated in the short term because of the different response of different species to meteorological conditions. In the longer term, the average concentrations of the various taxa tend to reach similar values, leading to increased values of diversity. Our finding of a decrease in pollen emission with increasing temperature has important implications for the study of the impacts of global change on high-altitude plant communities. We also detected a high abundance of Cupressaceae/Taxaceae pollen, a reflection of the expansion of thermophilic species, such as Juniperus, due to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abu-Dieyeh, M. H., & Ratrout, Y. S. (2012). Seasonal variation of airborne pollen grains in the atmosphere of Zarqa area, Jordan. Aerobiologia, 28, 527–539.

    Article  Google Scholar 

  2. Albertini, R., Brighetti, M. A., Galàn, C., Torrigiani- Malaspina, T., Manfredi, M., Marcer, M., et al. (2009). Manuale di Gestione e Qualità della Rete Italiana di Monitoraggio in Aerobiologia. R.I.M.A. Ozzano Emilia, Bologna: Associazione Italiana di Aerobiologia.

  3. Allen, C. D., & Breshears, D. D. (1998). Ecology drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences of the United States of America, 95, 14839–14842.

    CAS  Article  Google Scholar 

  4. Altintas, D. U., Karakoc, B. G., Yilmaz, M., Pinar, M., Kendirli, G., & Cakan, H. (2004). Relationship between pollen counts and weather variables in East-Mediterranean Coast of Turkey. Clinical and Developmental Immunology, 11, 87–96.

    Article  Google Scholar 

  5. Alwadie, M. H. (2008). Pollen concentration in the atmosphere of Abha City, Saudi Arabia and its relationship with meteorological parameters. Journal of Applied Sciences, 8, 842–847.

    CAS  Article  Google Scholar 

  6. Angelosante Bruno, A., Pace, L., Tomassetti, B., Coppola, E., Verdecchia, M., Pacioni, G., et al. (2007). Estimation of fungal spore concentrations associated to meteorological variables. Aerobiologia, 23, 221–228.

    Article  Google Scholar 

  7. Ayres, J. G., Forberg, B., Annesi-Maesano, I., Dey, R., Ebi, K. L., et al. (2009). Climate change and respiratory disease. European Respiratory Society position paper on behalf of the Environment and Human Health Committee. European Respiratory Journal, 34, 295–302.

    CAS  Article  Google Scholar 

  8. Bachert, C., Vignola, A. M., Gevaert, P., Leynaert, B., Van Cauwenberge, P., & Bousquet, J. (2004). Allergic rhinitis, rhinosinusitis, and asthma: One airway disease. Immunology and Allergy Clinics of North America, 24, 19–43.

    Article  Google Scholar 

  9. Bahn, M., & Korner, C. (1987). Vegetation und Phanologie der hochalpinen Gipfelflur des Glungezer in Tirol. Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck, 74, 61–80.

    Google Scholar 

  10. Belmonte, J., & Vilà, M. (2004). Atmospheric invasion of non-native pollen in the Mediterranean region. American Journal of Botany, 91, 1243–1250.

    Article  Google Scholar 

  11. Bianchi, M. M., & Olabuenaga, S. E. (2006). A 3-year airborne pollen and fungal spores record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia, 22, 247–257.

    Article  Google Scholar 

  12. Biondi, E., Ballelli, S., Allegrezza, M., Taffetani, M., Frattaroli, A. R., Guitian, J., et al. (1999). La vegetazione di Campo Imperatore (Gran Sasso d’Italia). Braun Blanquetia, 16, 53–116.

    Google Scholar 

  13. Brauer, M., Hoek, G., Smit, H. A., De Jongste, J. C., Gerritsen, J., Postmae, D. S., et al. (2007). Air pollution and development of asthma, allergy and infections in a birth cohort. European Respiratory Journal, 29, 879–888.

    CAS  Article  Google Scholar 

  14. Brooks, J., & Shaw, G. (2009). Sporopollenin: A review of its chemistry, palaeochemistry and geochemistry. Grana, 17, 91–97.

    Article  Google Scholar 

  15. Bruun, H. H., Moen, J., Virtanen, R., Grytnes, J., Oksanen, L., & Angerbjörn, A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17, 37–46.

    Article  Google Scholar 

  16. Camacho, I., Grinn-Gofroń, A., Camacho, R., Berenguer, P., & Sadyś, M. (2016). Madeira—A tourist destination for asthma sufferers. International Journal of Biometeorology, 60, 1739–1751.

    Article  Google Scholar 

  17. Comtois, P., Alcazar, P., & Neron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.

    Article  Google Scholar 

  18. Conti, F., Abbate, G., Alessandrini, A., & Blasi, C. (2005). An annotated checklist of the Italian vascular flora. Roma: Palombi Editore.

    Google Scholar 

  19. Conti, F., & Bartolucci, F. (2015). The vascular flora of the National Park of Abruzzo, Lazio and Molise (Central Italy). An annotated checklist. Geobotany Studies 6. Berlin: Springer.

  20. Cristofanelli, P., Di Carlo, P., D’ Altorio, A., Dari Salisburgo, C., Tuccella, P., et al. (2013). Analysis of summer ozone observations at a high mountain site in Central Italy (Campo Imperatore, 2388 m a.s.l.). Pure and Applied Geophysics, 170, 1985–1999.

    Article  Google Scholar 

  21. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.

    Article  Google Scholar 

  22. D’Amato, G., Rottem, M., Dahl, R., Blaiss, M., Ridolo, E., Cecchi, L., et al. (2011). Climate change, migration, and allergic respiratory diseases: An update for the allergist. World Allergy Organ Journal, 4, 120–125.

    Google Scholar 

  23. De La Cruz, D., Sánchez-Reyes, E., & Sánchez-Sánchez, J. (2012). Analysis of Chenopodiaceae-Amaranthaceae airborne pollen in Salamanca, Spain. Turkish Journal of Botany, 36, 336–343.

    Google Scholar 

  24. Diana, B., Finocchiaro, A. M., La Delfa, S., Patanè, G., Presti, F., Timpanaro, M., et al. (2006). Aerobiological monitoring applications in the Etnean volcanic plume evaluation (Mt. Etna, Sicily) and correlation with allergopathies. Aerobiologia, 22, 285–293.

    Article  Google Scholar 

  25. Fernández-Llamazares, Á., Belmonte, J., Boada, M., & Fraixedas, S. (2014). Airborne pollen records and their potential applications to the conservation of biodiversity. Aerobiologia, 30, 111–122.

    Article  Google Scholar 

  26. Franchi, G. G., Piotto, B. N., Nepi, M., Baskin, C. C., Baskin, J. M., & Pacini, E. (2011). Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal and survival. Journal of Experimental Botany, 62, 5267–5281.

    CAS  Article  Google Scholar 

  27. Galán, C., Emberlin, J., Domíguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198.

    Article  Google Scholar 

  28. Galán, C., Garcìa-Mozo, H., Vàzquez, L., Ruiz-Valenzuela, L., Dìaz de la Guardia, C., & Trigo-Pèrez, M. (2005). Heat requirement for the onset of the Olea europaea L. Pollen season in several places of Andalusia region and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.

    Article  Google Scholar 

  29. García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agriculture and Forest Meteorology, 149, 256–262.

    Article  Google Scholar 

  30. Guardia, C., Alba, F., Linares, C., Nieto-Lugilde, D., & Caballero, D. (2006). Aerobiological and allergic analysis of Cupressaceae pollen in Granada (Southern Spain). Journal of Investing Allergy and Clinical Immunology, 16, 24–33.

    Google Scholar 

  31. Guarín, F. A., Abril, M. A. Q., Alvarez, A., & Fonnegra, R. (2015). Atmospheric pollen and spore content in the urban area of the city of Medellin, Colombia. Hoehnea, 42, 9–19.

    Article  Google Scholar 

  32. Halwagy, M. (1988). Concentration of airborne pollen at three sites in Kuwait. Grana, 27, 53–62.

    Article  Google Scholar 

  33. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.

    Google Scholar 

  34. Hart, M. L., Ventworth, J. E., & Bailey, J. P. (1994). The effects of trap height and weather variables on recorded pollen concentration at Leicester. Grana, 33, 100–103.

    Article  Google Scholar 

  35. Hilaire, D., Rotach, M. W., & Clot, B. (2012). Building models for daily pollen concentrations. The example of 16 pollen taxa in 14 Swiss monitoring stations. Aerobiologia, 28, 499–513.

    Article  Google Scholar 

  36. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  37. Hong, C. S., Hwang, Y., Oh, S. H., Kim, H. J., Huh, K. B., & Lee, S. Y. (1986). Survey of the airborne pollen in Seoul Korea. Yonsei Medical Journal, 27(2), 114–120.

    CAS  Article  Google Scholar 

  38. Izquierdo, R., Belmonte, J., Avila, A., Alarcón, M., Cuevas, E., & Alonso-Pérez, S. (2011). Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). International Journal of Biometeorology, 55(1), 67–85.

    Article  Google Scholar 

  39. Jochner, S., Ziello, C., Böck, A., Estrella, N., Buters, J., Weichenmeier, I., et al. (2012). Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German–Austrian border. Aerobiologia, 28, 541–556.

    Article  Google Scholar 

  40. Käpylä, M. (2009). Diurnal variation of tree pollen in the air in Finland. Grana, 23, 167–176.

    Article  Google Scholar 

  41. Keyynan, N., Waisel, Y., Shomer-Ilan, A., Goren, A., & Brener, S. (1991). Annual variations of airborne pollen in the coastal plain of Israel. Grana, 30, 477–480.

    Article  Google Scholar 

  42. Körner, C. (2003). Alpine Plant Life. Functional plant ecology of high mountain ecosystems. Berlin: Springer.

    Google Scholar 

  43. Kumar, S. (1985). A survey of aerollergenic pollen and spores in the urban environment of Bareilly (India). Geophytology, 15, 188–198.

    Google Scholar 

  44. Lu, G., Glovsky, M. M., House, J., Flagan, R. C., & Taylor, P. E. (2005). Quantifying emissions of grass pollen and pollen fragments. Journal of Allergy and Clinical Immunology, 115, S21.

    Article  Google Scholar 

  45. Magurran, A. E. (1988). Ecological diversity and its measurement. New South Wales: Croom Helm.

    Book  Google Scholar 

  46. Magyar, D., Frenguelli, G., Bricchi, E., Tedeschini, E., Csontos, P., Li, D. W., et al. (2009). The biodiversity of air spora in an Italian vineyard. Aerobiologia, 25, 99–109.

    Article  Google Scholar 

  47. Mandrioli, P. (2000). Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse. Progetto di norma proposto alla Commissione Ambiente UNI. Consiglio Nazionale delle Ricerche, Istituto di Scienze dell’Atmosfera e dell’Oceano (ISAO). http://www.arpae.it/cms3/documenti/_cerca_doc/pollini/conteggio_pollini_spore.pdf.

  48. Markgraf, V. (1980). Pollen dispersal in a mountain area. Grana, 19, 127–146.

    Article  Google Scholar 

  49. Marshall, J. B. (2004). European allergy white paper. Allergic diseases as a public health problem in Europe. The UCB Institute of Allergy.

  50. Menzel, A. (2003). European phenological response to climate change matches the warming pattern. Climatic Change, 57, 243.

    Article  Google Scholar 

  51. Morris, E. K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T. S., et al. (2014). Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 4, 3514–3524.

    Article  Google Scholar 

  52. Nowosad, J., Stach, A., Kasprzyk, I., Latałowa, M., Puc, M., Myszkowska, D., et al. (2015). Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland. Aerobiologia, 31, 159–177.

    CAS  Article  Google Scholar 

  53. Nualart, N. (2003). Modelització de la distribuciópotencial a Catalunya de 24 espècies vegetals vasculars. Barcelona: Universidad de Barcelona.

    Google Scholar 

  54. Osborne, C. P., Chiune, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.

    Article  Google Scholar 

  55. Övergaard, R., Gemmel, P., & Karlsson, M. (2007). Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry, 80, 555–565.

    Article  Google Scholar 

  56. Pace, L., De Martinis, M., Sansonetti, G., Sirufo, M., Casilli, M., & Ginaldi, L. (2013). The aerobiological data in allergology in the provinces of L’Aquila and Teramo (Abruzzo). Allergy, 68(Supplement s97), 265–266.

    Google Scholar 

  57. Pace, L., Pacioni, G., Pirone, G., & Ranieri, L. (2005). Il Giardino Alpino di Campo Imperatore (Gran Sasso d’Italia). Informatore Botanico Italiano, 37, 1211–1214.

    Google Scholar 

  58. Pauli, H., Gottfried, M., & Grabherr, G. (1999). Vascular plant distribution patterns at the lowtemperature limits of plant life—The Alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia, 29, 297–325.

    Article  Google Scholar 

  59. Pérez, C., Gassmann, M., & Covi, M. (2009). An evaluation of the airborne pollen-precipitation relationship with the superposed epoch method. Aerobiologia, 25, 313–320.

    Article  Google Scholar 

  60. Perveen, A., & Khan, M. (2014). Seasonal fluctuations of airborne pollen grains count and its correlation with climatic factors from Khairpur Sindh, Pakistan. Pakistan Journal of Botany, 46, 299–306.

    Google Scholar 

  61. Perveen, A., Qaiser, M., & Islam, M. (2007). Airborne pollen survey of karachi and adjacent areas in relation to allergy. World Applied Sciences Journal, 2, 289–298.

    Google Scholar 

  62. Pitari, G., Coppari, E., De Luca, N., Di Carlo, P., & Pace, L. (2014). Aerosol measurements in the atmospheric surface layer at L’Aquila, Italy: Focus on biogenic primary particles. Pure and Applied Geophysics, 171, 2425.

    Article  Google Scholar 

  63. Puc, M., & Wolski, T. (2002). Betula and Populus pollen counts and meteorological conditions in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 9, 65–69.

    Google Scholar 

  64. Ribeiro, H., Cunha, M., & Abreu, A. (2003). Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia, 19, 21–27.

    Article  Google Scholar 

  65. Riediker, M., Koller, T., & Monn, C. (2000). Determination of birch pollen allergens in different aerosol sizes. Aerobiologia, 16, 251–254.

    Article  Google Scholar 

  66. Sánchez Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galan, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.

    Article  Google Scholar 

  67. Satpute, M., Dutta, B. K., & Rao, R. R. (1983). Contributions to the aerobiology of Shilling, I. Studies on the seasonal variation of atmospheric pollen and fungal spores. Proceedings of the Indian Academy of Sciences (Plant Science), B49, 675–686.

    Google Scholar 

  68. Scheifinger, H., Belmonte, J., Celenk, S., Damialis, A., Dechamp, C., Garcia-Mozo, H., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In M. Sofiev & K. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impact. The Netherlands: Springer.

    Google Scholar 

  69. Sebők, F., Dobolyi, C., Bobvos, J., Szoboszlay, S., Kriszt, B., & Magyar, D. (2016). Thermophilic fungi in air samples in surroundings of compost piles of municipal, agricultural and horticultural origin. Aerobiologia, 32, 255–263.

    Article  Google Scholar 

  70. Stanisci, A. (1997). Gli arbusteti altomontani dell’Appennino centrale e meridionale. Fitosociologia, 34, 3–46.

    Google Scholar 

  71. Tammaro, F. (1998). Il paesaggio vegetale dell’Abruzzo. Penne: Cogecstre edizioni.

    Google Scholar 

  72. Theurillat, J. P. (1995). Climate change and the alpine flora: Some perspectives. In A. Guisan, J. I. Holten, R. Spichigerand, & L. Tessier (Eds.), Potential ecological impacts of climate change in the Alps and Fennoscandian mountains (pp. 121–127). Genève: Conservatoire du Jardin Botanique de Genève.

    Google Scholar 

  73. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    CAS  Article  Google Scholar 

  74. Van Vliet, A. J. H., Overeem, A., De Groot, R. S., Jacobs, A. F. G., & Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in the Netherlands. International Journal of Climatology, 22, 1757–1767.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees for their comments on a previous version of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Pace.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pace, L., Boccacci, L., Casilli, M. et al. Correlations between weather conditions and airborne pollen concentration and diversity in a Mediterranean high-altitude site disclose unexpected temporal patterns. Aerobiologia 34, 75–87 (2018). https://doi.org/10.1007/s10453-017-9499-x

Download citation

Keywords

  • Temperature
  • Humidity
  • Wind speed
  • Gran Sasso National Park
  • Italy
  • Diversity indices
  • Climate change