Aerobiologia

, Volume 33, Issue 4, pp 529–554 | Cite as

Statistical modeling, forecasting and time series analysis of birch phenology in Montreal, Canada

Original Paper

Abstract

The aim of this study was to analyse birch pollen time series observed in Montreal (Canada) in order to understand the link between inter-annual variability of phenology and environmental factors and to build predictive models for the upcoming pollen season. Modeling phenology is challenging, especially in Canada, where phenological observations are rare. Nevertheless, understanding phenology is required for scientific applications (e.g. inputs to numerical models of pollen dispersion) but also to help allergy sufferers to better prepare their medication and avoidance strategies before the start of the pollen season. We used multivariate statistical regression to analyse and predict phenology. The predictors were drawn from a large basin (over 60) of potential environmental predictors including meteorological data and global climatic indices such NAO (North Atlantic Oscillation index) and ENSO/MEI (Multivariate Enso Index). Results of this paper are summarized as follows: (1) an accurate forecast for the upcoming season starting date of the birch pollen season was obtained (showing low bias and total forecast error of about 4 days in Montreal), (2) NAO and ENSO/MEI indices were found to be well correlated (i.e. 44% of the variance explained) with birch phenology, (3) a long-term trend of 2.6 days per decade (p < 0.1) towards longer season duration was found for the length of the birch pollen season in Montreal. Finally, perturbations of the quasi-biennial cycle of birch were observed in the pollen data during the pollen season following the Great Ice Storm of 1998 which affected south-eastern Canada.

Keywords

Phenology Airborne pollen Birch (BetulaNAO ENSO/MEI Statistical analysis and modeling 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. Abley, M. (1998). The ice storm: An historic record in photographs of January 1998. In J. Robinson, McClelland and Stewart Inc., ISBN 0-7710-6100-5.Google Scholar
  2. Adams-Groom, B., Emberlin, J., Corden, J., Millington, W., & Mullins, J. (2002). Predicting the start of the birch pollen season at London Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia, 18, 117–123.CrossRefGoogle Scholar
  3. Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.CrossRefGoogle Scholar
  4. Antépara, I., Fernández, J. C., Gamboa, P., Jauregui, I., & Miguel, F. (1995). Pollen allergy in the Bilboa area (European Atlantic seabord climate): pollination forecasting methods. Clinical and Experimental Allergy, 25, 133–140.CrossRefGoogle Scholar
  5. Avalo, E., Pasqualoni, L., Federico, S., et al. (2008). Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy. International Journal of Biometeorology, 52, 787–796.CrossRefGoogle Scholar
  6. Bapikee, C. (2005). Contenu pollinique atmosphérique à Montréal (Québec) et les variations climatiques interannuelles de 1985 à 1988. Mémoire de maîtrise: Département de géographie de l’Université de Montréal.Google Scholar
  7. Beal, D. J. (2005). SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria. http://analytics.ncsu.edu/sesug/2005/SA01_05.PDF. Last Accessed January 20 2017.
  8. Braun, E. L. (1950). Deciduous forest of Eastern North America. New York: The Free Press.Google Scholar
  9. Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.CrossRefGoogle Scholar
  10. CLA (Canadian Lung Association) (2015). http://www.lung.ca/home-accueil_e.php. Accessed January 20 2017.
  11. Clot, B. (2001). Airborne birch pollen in Neuchatel (Switzerland): onset, peak and daily patterns. Aerobiologia, 17, 25–29.CrossRefGoogle Scholar
  12. Comtois, P., & Gagnon, L. (1988). Concentration pollinique et fréquence des symptômes de pollinose: une méthode pour déterminer les seuils cliniques. Revue Française d’Allergologie, 28(4), 279.Google Scholar
  13. Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics (American Statistical Association), 19(1), 15–18.Google Scholar
  14. D’Odorico, P., Yoo, J. C., & Jager, S. (2002). Changing seasons: An effect of the North Atlantic oscillation? Journal of Climate, 15, 435–445.CrossRefGoogle Scholar
  15. Dales, R. E., Cakmak, S., Judek, S., & Coates, F. (2008). Tree pollen and hospitalization for asthma in urban Canada. International Archives of Allergy and Immunology, 146, 241–247. doi: 10.1159/000116360.CrossRefGoogle Scholar
  16. Daniel, C., & Wood, F. (1980). Fitting equations to data (Revised ed.). New-York: WileyInc.Google Scholar
  17. de Réamur, M. (1735). Observations du thermomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l’Amérique. Académie des Sciences de Paris, 545.Google Scholar
  18. Emberlin, J., Detandt, M., & Gehrig, R. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170. doi: 10.1007/s00484-006-0038-7.CrossRefGoogle Scholar
  19. Emberlin, J., Savage, M., & Woodwood, R. (1993). Annual variations in the concentrations of Betula pollen in the London area, 1961–1990. Grana, 32, 359–363.CrossRefGoogle Scholar
  20. Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. Chichester: Wiley.Google Scholar
  21. Fairley, D., & Batchelder, G. L. (1986). A study of oak-pollen production and phenology in northern California: Prediction of annual variation in pollen counts based on geographic and meteorological factors. Journal of Allergy and Clinical Immunology, 78, 300–307.CrossRefGoogle Scholar
  22. Faust, M. (1989). Physiology of temperate zone fruit trees (pp. 169–234). London: Wiley.Google Scholar
  23. Frey, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season: an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674. doi: 10.1007/s00484-008-0159-2.CrossRefGoogle Scholar
  24. Galán, C., García-Mozo, H., Vazquez, L., Ruiz, L., Diaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.CrossRefGoogle Scholar
  25. García-Mozo, H., Chine, I., & Aira, M. J. (2008). Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.CrossRefGoogle Scholar
  26. Goldberg, C., Bugh, H., Moseholm, L., & Weeke, E. R. (1988). Airborne pollen record in Denmark, 1977–86. Grana, 27, 209–217.CrossRefGoogle Scholar
  27. Guérin, B. (1993). Pollen et allergies. Éd. Allerbio, Varennes-en-Argonne, 279 pages.Google Scholar
  28. Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, G. J., & Hansen, C.F. (2009). Potential role of Ca in the response of paper birch (Betula papyrifera) to ice storm induced decline in Vermont, USA. In 94th ESA annual meeting, Albuquerque, New Mexico, August 2–7.Google Scholar
  29. Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3–19.CrossRefGoogle Scholar
  30. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  31. Hoang Diem Ngo, T. (2012). The steps to follow in a multiple regression analysis. Paper 333-2012. SAS Global Forum 2012. April 22-25 Orlando, Florida. Available at: support.sas.com/resources/papers/proceedings12/333-2012.pdf.Google Scholar
  32. Hurrell, J. W., & van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic oscillation. Climate Change, 36, 301–332.CrossRefGoogle Scholar
  33. Institut national de santé publique du Québec (INSPQ) (2013). États des connaissances sur le pollen et les allergies. Les assises pour une gestion efficace, ISBN 978-2-550-68403-9 (available at http://www.inspq.qc.ca).
  34. IPCC (Inter-governmental Panel for Climate Change). (2007a). The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.Google Scholar
  35. IPCC (Inter-governmental Panel for Climate Change). (2007b). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In Solomon, S., D. Qin, M. Manning, & Z. Chen et al. (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. available at http://www.ipcc.ch.
  36. Jones, S. (1995). Allergenic pollen concentrations in the United Kingdom. PhD Thesis. London : University of North London.Google Scholar
  37. Laaidi, M. (2001). Regional variations in the pollen season of Betula in Burgundy: Two models for predicting the start of the pollination. Aerobiologia, 17, 247–254.CrossRefGoogle Scholar
  38. Laaidi, K., Laaidi, M., & Besancenot, J.-P. (1997). Pollens, pollinoses et météorologie. La météorologie, 20(8), 41–55.CrossRefGoogle Scholar
  39. Laaidi, K., Laaidi, M., & Besancenot, J.-P. (2002). Synergie entre pollens et polluants chimiques de l’air: les risques croisés. Environnement, Risques et santé, 1(1), 42–49.Google Scholar
  40. Latalowa, M., Miętus, M., & Uruska, A. (2002). Seasonal variations in the atmospheric Betula pollen in Gdańsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia, 18, 33–43. doi: 10.1023/A1014905611834.CrossRefGoogle Scholar
  41. Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15(4), 661–675.Google Scholar
  42. Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in aerobiology. Pitagora Editrice Bologna ISBN 8-371-1043-X.Google Scholar
  43. Mark, J., & Goldberg, M. A. (2001). Multiple regression analysis and mass assessment: A Review of the issues. The Appraisal Journal, 56, 89–109.Google Scholar
  44. Mayers, J. H., & Forgy, E. W. (1963). The development of numerical credit evaluation systems. Journal of the American Statistical association, 58(303), 799–806.CrossRefGoogle Scholar
  45. Méndez, J., Comtois, P., & Iglesias, I. (2005). Betula pollen: One of the most important aeroallergens in Ourense, Spain. Aereobiological studies from 1993 to 2000. Aerobiologia, 21, 115–123.CrossRefGoogle Scholar
  46. Montgomery, D. C. (2005). Design and analysis of experiments. 6th edn, Wiley. New York, Section 7.3.Google Scholar
  47. NOAA (2012a). NAO bi-monthly index. (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/). Accessed 29 January 2017.
  48. NOAA (2012b) Multivariate ENSO index (MEI) (https://www.esrl.noaa.gov/psd/enso/mei/index.html). Accessed 29 January 2017.
  49. Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C., & Stenseth, N. C. (2001). Ecological effects of the North Atlantic oscillation. Oecologia, 12, 1–14. doi: 10.1007/s004420100655.CrossRefGoogle Scholar
  50. Ranta, H., & Satri, P. (2007). Synchronised inter-annual fluctuations of flowering intensity affects the exposure to allergenic tree pollen in North Europe. Grana, 46(4), 274–284.CrossRefGoogle Scholar
  51. Ranta, H., Siljamo, P., Oksanen, A., Sofiev, M., Linkosalo T., Bergmann, K.-C., Bucher, E., Ekebom, A., Emberlin, J., Gehrig, R., Hallsdottir, M., Jato, V., Jäger, S., Myszkowska, D., Paldy, A., Ramfjord, H., Severova, E., & Thibaudon, M. (2011). Aerial and annual variation of birch pollen loads and a modelling system for simulating and forecasting pollen emissions and transport at an European scale. In B. Clot, P. Comtois, & B. Escamilla-Garciá (eds), Aerobiological monographs. Towards a comprehensive vision (Vol.1, pp. 115–131). MeteoSwiss (CH) and University of Montreal(CA), Montréal, Canada,. ISBN 978-2-8399-0466-7.Google Scholar
  52. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265.CrossRefGoogle Scholar
  53. Rea, R., & Eccel, E. (2006). Phenological models for blooming of apple in a mountainous region. International Journal of Biometeorology, 51, 1–16.CrossRefGoogle Scholar
  54. Rousi, M., & Heinonen, J. (2007). Temperature sum accumulation effects on within-population variation and long-term trends in date of bud burst of European white birch (Betula pendula). Tree Physiology, 27, 1019–1025.CrossRefGoogle Scholar
  55. Rozas, V., & García-González, I. (2012). Non-stationary influence of El Nino-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int: J. Biometeorol. doi: 10.1007/s00484-011-0479-5.Google Scholar
  56. SAS Institute Inc. (1989). SAS/STAT and SAS/ETS User’s Guide, Version 6, vol. 2 (4th ed.). Cary: SAS Institute.Google Scholar
  57. Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., Garcίa-Mozo, H., Gehrig, R., Grewling, H., Halley, J. M. et al. (2013). Monitoring, modelling and forecasting of the pollen season. Chap 4. In Allergenic pollen. A review of the production, release, distribution and health impacts. Chap. 4. Sofiev, Mikhail, Bergmann, Karl-Christian (Eds.), doi  10.1007/978-94-007-4881-1.
  58. Scheifinger, H., Menzel, A., Koch, E., & Peter, C. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology, 22, 1739–1755.CrossRefGoogle Scholar
  59. Shabbar, A., & Khandekar, M. (1996). The impact of El Niño—Southern Oscillation on the temperature field over Canada. Atmosphere-Ocean, 34, 401–416.CrossRefGoogle Scholar
  60. Shortle, W. C., Smith, K. T., Dudzik, K. R. et al. (2003). Tree survival and growth following ice storm injury. USDA Forest Service, Northeastern Research. Research paper NE-723.Google Scholar
  61. Siljamo, P. (2013). Numerical modelling of birch pollen emissions and dispersion on regional and continental scales. Finnish Meteorological Institute Contributions No. 99, FMI-CONT-99. Helsinki, Finland. ISBN 978-951-697-795-2.Google Scholar
  62. Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., et al. (2008a). Representativeness of point-wise phonological Betula data collected in different parts of Europe. Global Ecology and Biogeogeography, 17(4), 489–502.CrossRefGoogle Scholar
  63. Siljamo, P., Sofiev, M., Severova, E., et al. (2008b). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia, 24, 211–230. doi: 10.1007/s10453-008-9100-8.CrossRefGoogle Scholar
  64. Sofiev, M., Belmonte, J., Gehrig, R., Izquierdo, R., Smith, M., Dahl, A., Siljamo, P. (2013b). Airborne pollen transport. Chap 5. In M. Sofiev & K. C. Bergmann (eds.), Allergenic pollen. A review of the production, release, distribution and health impacts. Springer Science + Business Media, Dordrecht, 256 pp. ISBN 978-94-007-4880-4e-ISBN 978-94-94-007-4881-1.Google Scholar
  65. Sofiev, M., & Bergmann, K. C. (Eds.). (2013). Allergenic pollen. A review of the production, release, distribution and health impacts. New York : Springer. doi: 10.1007/978-94-007-4881-1.Google Scholar
  66. Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. (2013a). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57, 45–58. doi: 10.1007/s00484-012-0532-z.CrossRefGoogle Scholar
  67. Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006a). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402. doi: 10.1007/s00484-006-0027-X.CrossRefGoogle Scholar
  68. Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006b). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685.CrossRefGoogle Scholar
  69. Spieksma, F Th M, Emberlin, J. C., Hjelmroos, M., et al. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34, 51–57.CrossRefGoogle Scholar
  70. Stach, A., Emberlin, J., Smoth, B., Adams-Groom, B., & Myszkowska, D. (2008). Factors that determine the severity of Betula spp. Pollen season in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London). International Journal of Biometeorology, 52, 311–321. doi: 10.1007/s00484-0127-2.CrossRefGoogle Scholar
  71. Stanley, R. G., & Linskens, H. F. (1974). Pollen, biology, biochemistry, management. Berlin: Springer.Google Scholar
  72. Tamburlini, G., et al. (2002). Children’s health and environment: a review of evidence, Environmental European Agency. Report no 29, 44-57. Available at http://www.euro.who.int/__data/assets/pdf_file/0007/98251/E75518.pdf. Accessed January 29 2017.
  73. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein, T., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B., & Zhai, P. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H.L. Miller (eds.), Climate change 2007: The physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. pp. 235–336. https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3.html. Accessed January 29 2017.
  74. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. doi: 10.1038/416389a.CrossRefGoogle Scholar
  75. Weisberg, S. (2013). Applied linear regression, 4th edn. ISBN: 978-1-118-38608-8. Wiley Publishers.Google Scholar
  76. White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic vriability. Global Biogeochemical Cycles, 11(2), 217–234.CrossRefGoogle Scholar
  77. WHO (World Health Organization). (2003). Phenology and human health: Allergic disorders. Copenhagen; WHO regional office for Europe, 55p. Available at http://apps.who.int/iris/bitstream/10665/107479/1/e79129.pdf. Accessed January 29 2017.
  78. Xie, Y., Wang, X., & Silander, J. A. (2015). Deciduous forest responses to temperature, precipitation and drought imply complex climate change impacts. PNAS, 112(44), 13585–13590. doi: 10.1073/pnas.1509991112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of GeographyUniversity of MontrealMontrealCanada

Personalised recommendations