, Volume 33, Issue 4, pp 473–480 | Cite as

Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically

  • Helena Ribeiro
  • Ilda Abreu
  • Mário Cunha
Original Paper


Olive trees are one of the most economically important perennial crops in Portugal. During the last decade, the Alentejo olive-growing region has suffered a significantly change in the crop production system, with the regional pollen index (RPI) and olive fruit production registering a significant growth. The aim of this study was to ascertain the utility of this highly variable production and pollen data in crop forecasting modeling. Airborne pollen was sampled using a Cour-type trap from 1999 to 2015. A linear regression model fitted with the regional pollen index as the independent variable showed an accuracy of 87% in estimating olives fruit production in Alentejo. However, the average deviation between observed and modeled production was 32% with half of the tested years presenting deviations between 36 and 66%. The low accuracy of this model is a consequence of the great overall variation and significant upward trend observed in both the production and the RPI dataset that conceal the true association between these variables. In order to overcome this problem, a detrend procedure was applied to both time series to remove the trend observed. The regression model fitted with the fruit production and the RPI detrended data showed a lowest forecasting accuracy of 63% but the average deviation between observed and modeled production decrease to 14% with a maximum deviation value of 33%. This procedure allows focusing the analysis on the production fluctuations related to the biological response of the trees rather than with the changes in the production system.


Olive yield Crop yield forecast Modeling Airborne-pollen Time-series Trend 



Scholarship (SFRH/BDP/103934/2014) of H. Ribeiro financed by FCT—The Portuguese Science and Technology Foundation through National Funds of the MCTES. Institute of Earth Sciences (ICT) funds, under contract with FCT and FEDER through the Operational Program Competitiveness Factors—COMPETE.


  1. Abid, A. (1984). Contribution à l’étude de la pollinisation de l’olivier (Olea europaea). Thèse Doctorel: Université de Montpellier II, Montpellier.Google Scholar
  2. Aguilera, F., & Ruiz-Valenzuela, L. (2014). Forecasting olive crop yields based on long-term aerobiological data series and bioclimatic conditions for the southern Iberian Peninsula. Spanish Journal of Agricultural Research, 12(1), 215–224.CrossRefGoogle Scholar
  3. Chatfield, C. (2004). The analysis of time series, an introduction (6th ed.). London: Chapman & Hall/CRC.Google Scholar
  4. Cour, P. (1974). Nouvelles technique de détection des flux et des retombées polliniques: étude de la sedimentation des pollens et des spores à la surface du sol. Pollen et Spores, XVI(1), 103–141.Google Scholar
  5. Cour, P., & Campo, M. V. (1980). Prévision de récoltes à partir de l’analyse du contenu pollinique de l’atmosphére. Comptes Rendus de l’Academie des Sciences, série D, 290, 1043–1046.Google Scholar
  6. Cunha, M., Abreu, I., Pinto, P., & Castro, R. (2003). Airborne pollen samples for early-season estimates of wine production in a Mediterranean climate of Northern Portugal. American Journal of Enology and Viticulture, 54(3), 189–194.Google Scholar
  7. Cunha, M., Ribeiro, H., & Abreu, I. (2016). Pollen-based predictive modelling of wine production: Application to an arid region. European Journal of Agronomy, 73, 42–54.CrossRefGoogle Scholar
  8. Cunha, M., Ribeiro, H., Costa, P., & Abreu, I. (2015). A comparative study of vineyard phenology and pollen metrics extracted from airborne pollen time series. Aerobiologia, 31(1), 45–56.CrossRefGoogle Scholar
  9. Fornaciari, M., Orlandi, F., & Romano, B. (2005). Yield forecasting for Olive trees: A new approach in a historical series (Umbria, Central Italy). Agronomy Journal, 97, 1537–1542.CrossRefGoogle Scholar
  10. Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Domínguez-Vilches, E. (2008). Modeling olive crop yield in Andalusia, Spain. Agronomy Journal, 100, 98–104.CrossRefGoogle Scholar
  11. Galán, C., Vásquez, L., García-Mozo, H., & Domínguez, E. (2004). Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crops Research, 86, 43–51.CrossRefGoogle Scholar
  12. García-Mozo, H., Yaezel, L., Oteros, J., & Galán, C. (2014). Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Science of the Total Environment, 473–474, 103–109.CrossRefGoogle Scholar
  13. Gommes, R., Das, H., Mariani, L., Challinor, A., Tychon, B., Balaghi, R., et al. (1981). Agrometeorological forecasting. In Guide to agricultural meteorological practices (2nd ed., Vol. Chapter 5): World Meteorological Organization.Google Scholar
  14. INE. (2016a). Produção das principais culturas agrícolas (t) por Localização geográfica (NUTS-2013) e Espécie. Instituto Nacional de Estatística. Accessed Oct 15, 2016.Google Scholar
  15. INE. (2016b). Produção de azeitona (t) por Local de proveniência da azeitona (NUTS-2013)-Inquérito Anual à Produção de Azeite. Instituto Nacional de Estatística. Accessed Oct 15, 2016.Google Scholar
  16. INE. (2016c). Superfície das principais culturas agrícolas (ha) por Localização geográfica (Região agrária) e Espécie. Instituto Nacional de Estatística. Accessed Oct 15, 2016.Google Scholar
  17. Miranda, P., Coelho, F. E. S., Tomé, A. R., & Valente, M. A. (2001). 20th Century Portuguese climate and climate scenarios. In F. D. Santos, K. Forbes, & R. Moita (Eds.), Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures-SIAM. Executive Summary and Conclusions. (1st ed., pp. 23–84). Lisbon: Gradiva.Google Scholar
  18. Moriondo, M., Orlandini, S., Nuntiis, P. D., & Mandrioli, P. (2001). Effect of agrometeorological parameters on the phenology of pollen emission and production of olive trees (Olea europea L.). Aerobiologia, 7, 225–232.CrossRefGoogle Scholar
  19. Orlandi, F., Aguilera, F., GalÁN, C., Msallem, M., & Fornaciari, M. (2016). Olive yields forecasts and oil price trends in mediterranean areas: A comprehensive analysis of the last two decades. Experimental Agriculture, 53(1), 71–83.CrossRefGoogle Scholar
  20. Oteros, J., Orlandi, F., Garcia-Mozo, H., Aguilera, F., Ben Dhiab, A., Bonofiglio, T., et al. (2014). Better prediction of Mediterranean olive production using pollen-based models. Agronomy for Sustainable Development, 34(3), 685–694.Google Scholar
  21. Pôças, I., Paço, T. A., Cunha, M., Andrade, J. A., Silvestre, J., Sousa, A., et al. (2014). Satellite based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering, 128, 69–81.CrossRefGoogle Scholar
  22. Reis, P. (2014). O olival em Portugal. Dinâmicas, tecnologias e relação com o desenvolvimento rural. Lisboa: Animar-associação portuguesa para o desenvolvimento local.Google Scholar
  23. Ribeiro, H., Cunha, M., & Abreu, I. (2007a). Definition of the main pollen season using a logistic model. Annals of Agricultural and Environmental Medicine, 14, 159–167.Google Scholar
  24. Ribeiro, H., Cunha, M., & Abreu, I. (2007b). Improving early-season estimates of olive production using airborne pollen multi-sampling sites. Aerobiologia, 23(1), 71–78.CrossRefGoogle Scholar
  25. Ribeiro, H., Cunha, M., & Abreu, I. (2009). A bioclimatic model for forecasting olive yield. Journal of Agricultural Science, 147, 647–656.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Earth Sciences Institute, Pole of.the Faculty of SciencesUniversity of PortoPortoPortugal
  2. 2.Biology Department, Faculty of SciencesUniversity of PortoPortoPortugal
  3. 3.Department of Geosciences, Environment and Spatial Planning, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations