Changes in the Mediterranean pine forest: pollination patterns and annual trends of airborne pollen

Abstract

In some areas, forests are being affected in diverse aspects such as structure, composition and biodiversity showing an increase or a decrease in the growth rates. Pinus is one of the most dominant genera in the forests of the Northern Hemisphere. This study analyzes the pine pollination patterns in 30 locations of Spain with an average of 21-year dataset. The aim is to evaluate possible changes in flowering intensity as well as in annual pollen production trends, according to the airborne pollen patterns. Annual Pollen Indices show three threshold values: (1) over 4000 grains per year in Catalonia, the Central System Mountains and Ourense (Galicia), (2) between 4000 and 1000 grains in central-south Spain and in the Balearic Islands, and (3) under 1000 in eastern Spain, Cartagena and the Canary Islands. Airborne pollen patterns were also influenced by Pinus species: The species located in the littoral and low land areas pollinated in the first pollination phase, from February to April, and the mountain pine species did in the second one, from April to June. The statistical analyses reveal increasing significant trends in 12 sites and significant decreasing trends in two. The Pinus flowering intensity is showing an earlier start and a delay in the end of the pollination period, thus a longer period of pollen in the air. This study suggests that the aerobiological monitoring is an interesting bio-indicator of changes happening in Pinus landscapes, and therefore explains the vulnerability of this genus in Spain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alba-Sánchez, F., Sabariego-Ruiz, S., Díaz de la Guardia, C., Nieto-Lugilde, D., & De Linares, C. (2010). Aerobiological behaviour of six anemophilous taxa in semi-arid environments of southern Europe (Almería, SE pain). Journal of Arid Environment, 74, 1381–1391.

    Article  Google Scholar 

  2. Allué, J. L. (1990). Atlas fitoclimático de España [Phytoclimatic Atlas of Spain]. Madrid: INIA.

    Google Scholar 

  3. Ameztegui, A., & Coll, L. (2011). Tree dynamics and co-existence in the montane-sub-alpine ecotone: The role of different light-induced strategies. Journal Vegetation Science, 22, 1049–1061.

    Article  Google Scholar 

  4. Attorre, F., Alfo, M., De Sanctis, M., Francesconi, F., Valenti, R., Vitale, M., et al. (2011). Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Applied Vegetation Science, 14(2), 242–255.

    Article  Google Scholar 

  5. Belmonte, J., Alarcón, M., Avila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology, 52(7), 675–687.

    CAS  Article  Google Scholar 

  6. Benito Garzón, M., Sánchez de Dios, R., & Sainz Ollero, H. (2008). Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11(2), 169–178.

    Article  Google Scholar 

  7. Briceño-Elizondo, E., Garcia-Gonzalo, J., Peltola, H., Matala, J., & Kellomaki, S. (2006). Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. Forest Ecology Management, 232, 152–167.

    Article  Google Scholar 

  8. Cariñanos, P., De la Guardia, C., Algarra, J. A., De Linares, C., & Irurita, J. M. (2013). The pollen counts as bioindicator of meteorological trends and tool for assessing the status of endangered species: The case of Artemisia in Sierra Nevada (Spain). Climatic Change, 119, 1–15.

    Article  Google Scholar 

  9. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2004). Airborne pollen records response to climatic conditions in arid areas of the Iberian Peninsula. Environmental and Experimental Botany, 52, 11–22.

    Article  Google Scholar 

  10. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2010). Airborne pollen records and status of the anemophilous flora in arid areas of the Iberian Peninsula. Journal of Arid Environments, 74, 1102–1105.

    Article  Google Scholar 

  11. Castroviejo, S., Aedo, C., Cirujano, S., Laínz, M., Montserrat, P., Morales, R., et al. (Eds.). (1993). Flora ibérica 1. Madrid: Real Jardín Botánico, CSIC.

    Google Scholar 

  12. Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19, 227–234.

    Article  Google Scholar 

  13. Dale, V. H., Joyce, L. A., McNulty, S., & Neilson, R. P. (2000). The interplay between climate change, forests, and disturbances. Science of the Total Environment, 262, 201–204.

    CAS  Article  Google Scholar 

  14. Dale, V. H., Joyce, L. A., Mcnulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., et al. (2001). Climate change and forest disturbances. BioScience, 51(9), 723–734.

    Article  Google Scholar 

  15. DGCN, IFN3. (2007). Tercer Inventario Forestal Nacional, IFN3 (19972007) [Third National Forest Inventory, IFN3 (19972007)]. Madrid: Ministerio de Medio Ambiente. http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn3.aspx. Accessed November 9, 2016.

  16. Docampo, S., Recio, M., Trigo, M. M., Melgar, M., & Cabezudo, B. (2007). Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia, 23, 189–199.

    Article  Google Scholar 

  17. FAO. (2011). State of the world’s forests. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  18. FAO. (2012). Forest management and climate change: A literature review. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  19. Fernández-González, M., Rodríguez-Rajo, F. J., Jato, V., Escuredo, O., & Aira, J. M. (2011). Estimation of yield “Loureira” variety with an aerobiological and phenological model. Grana, 50, 63–72.

    Article  Google Scholar 

  20. Fernández-Llamazares, A., Belmonte, J., Delgado, R., & De Linares, C. (2014). A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). International Journal of Biometeorology, 58, 371–382. doi:10.1007/s00484-013-0632-4.

    Article  Google Scholar 

  21. Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.

    Article  Google Scholar 

  22. Frenguelli, G., Tedeschini, E., Veronesi, F., & Bricchi, E. (2002). Airborne pine (Pinus spp.) pollen in the atmosphere of Perugia (Central Italy): Behaviour of pollination in the two last decades. Aerobiologia, 18, 223–228.

    Article  Google Scholar 

  23. Galán, C., Alcázar, P., Oteros, J., García-Mozo, H., Aira, M. J., Belmonte, J., et al. (2016). Airborne pollen trends in the Iberian Peninsula. Science of the Total Environment, 550, 53–59.

    Article  Google Scholar 

  24. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Manual de Calidad y Gestión de la Red Española de Aerobiología [Quality manual and management Spanish aerobiology network]. Spain: Servicio de Publicaciones de la Universidad de Córdoba.

    Google Scholar 

  25. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395.

    Article  Google Scholar 

  26. García-Gonzalo, J., Peltola, H., Briceño-Elizondo, E., & Kellomäki, S. (2007). Changed thinning regimes may increase carbon stock under climate change: A case study from a Finnish boreal forest. Climatic Change, 81, 431–454.

    Article  Google Scholar 

  27. García-Mozo, H., Mestre, A., & Galán, C. (2010). Phenological trends in southern Spain: A response to climate change. Agricultural Forest Meteorology, 150, 575–580.

    Article  Google Scholar 

  28. Gobierno de Canarias. (2007) Programa de desarrollo rural de Canarias. FEADER (2007) [Rural Development Programme de Canarias. FEADER 2007]. Canarias: Gobierno de Canarias. http://www.pdrcanarias.org. Accessed November 9, 2016.

  29. Green, B. J., Panula, E. Y., Dettmann, M., Rutherford, S., & Simpson, R. (2003). Airborne Pinus pollen in the atmosphere of Brisbane, Australia and relationships with meteorological parameters. Aerobiologia, 19, 47–55.

    Article  Google Scholar 

  30. Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 38, 257–265.

    Article  Google Scholar 

  31. Jato, M. V., Rodríguez, F. J., & Seijo, M. C. (2000). Pinus pollen in the atmosphere of Vigo and its relationship to meteorological factors. International Journal of Biometeorology, 43, 147–153.

    CAS  Article  Google Scholar 

  32. Lenoir, J., Gégout, J. C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., et al. (2010). Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33(2), 295–303.

    Google Scholar 

  33. Lewis, H., Ziska, L. H., Epstein, P. R., & Rogers, C. A. (2008). Climate change, aerobiology, and public health in the Northeast United States. Mitigation and Adaptation Strategies for Global Change, 13, 607–613. doi:10.1007/s11027-007-9134-1.

    Article  Google Scholar 

  34. Linares, J. C., & Tíscar, P. A. (2010). Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiology, 30(7), 795–806.

    Article  Google Scholar 

  35. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology Management, 259, 698–709.

    Article  Google Scholar 

  36. Martínez-Vilalta, J., López, B. C., Adell, N., Badiella, L., & Ninyerola, M. (2008). Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global Change Biology, 14, 2868–2881.

    Article  Google Scholar 

  37. Navascués, M., Vendramin, G. G., & Emerson, B. C. (2007). The effect of altitude on the pattern of gene flow in the endemic canary island pine, Pinus canariensis. Silvae Genetica, 57, 357–363.

    Google Scholar 

  38. Pearson, K. (1896). Mathematical contributions to the theory of evolution.--on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 60(359–367), 489–498.

    Article  Google Scholar 

  39. Pérez Badia, R., Rapp, A., Morales, C., Sardinero, S., Galán, C., & García-Mozo, H. (2010). Pollen spectrum and risk of pollen allergy in central Spain. Annals of Agricultural and Environmental Medicine, 17, 139–151.

    Google Scholar 

  40. R Development Core Team. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  41. Rodriguez-Rajo, F. J., Jato, V., & Aira, M. J. (2003). Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia, 19, 213–225.

    Article  Google Scholar 

  42. Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353–358.

    CAS  Article  Google Scholar 

  43. Ruiz Garcia, L., Diaz de la Guardia, C., & Mota, J. F. (1998). Analysis of airborne pollen in the town of Almería (South-East Spain), 1995–1996. Aeroblologia, 14, 281–284.

    Article  Google Scholar 

  44. Sabaté, S., Gracía, C. A., & Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology Management, 162, 23–37.

    Article  Google Scholar 

  45. Sánchez-Salguero, R., Navarro-Cerrillo, R. M., Swetnam, T. W., & Zavala, M. A. (2012). Is drought the main decline factor at the rear edge of Europe? The case of southern Iberian pine plantations. Forest Ecology Management, 271, 158–169.

    Article  Google Scholar 

  46. Sen, P. K. (1968). Asymptotic normality of sample, quantiles for m-dependent processes. Annals of Mathematical Statistics, 39, 1724–1730.

    Article  Google Scholar 

  47. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.

    Article  Google Scholar 

  48. Spearman, C. (1904). “General Intelligence” objectively determined and measured. American Journal of Psychology, 15(2), 202–286.

    Article  Google Scholar 

  49. Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. I, II, III. Proceedings of the Knoniklijke Nederlandse Academie van Wetenschappen, 53, 386–392.

    Google Scholar 

  50. Thuiller, W., Vayreda, J., Pino, J., Sabate, S., Lavorel, S., & Gracía, C. (2003). Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology Biogeography, 12, 313–325.

    Article  Google Scholar 

  51. Tormo-Molina, R., Gonzalo-Garijo, M. A., Silva-Palacios, I., & Muñoz-Rodríguez, A. F. (2010). General trends in airborne pollen production and pollination periods at a Mediterranean site (Badajoz, Southwest Spain). Journal of Investigational Allergology and Clinical Immunology, 20(7), 567–574.

    CAS  Google Scholar 

  52. Tormo-Molina, R., Silva-Palacios, I., Gonzalo-Garijo, A., Moreno-Corchero, A., Pérez-Calderón, R., & Fernández-Rodríguez, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55, 51–65.

    Article  Google Scholar 

  53. Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Philosophical Transactions of the Royal Society of London, 365, 3645–3653.

    Article  Google Scholar 

  54. Zar, J. H. (1972). Significance testing of the spearman rank correlation coefficient. Journal of the American Statistical Association, 67, 339.

    Article  Google Scholar 

  55. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. H., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7, 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank different projects and entities for financing this study: COST ES0603 EUPOL; Laboratorios LETI S.A.; Proyecto EOLO-PAT; European Commission for “ENV4-CT98-0755”; Spanish Ministry of Science and Technology I+D+I for “CGL2009-11205,” “CGL2012-39523-C02-01/CLI,” “MTM2015 67802-P,” “FENOMED CGL2014-54731-R,” and FEDER “A way to build Europe,” and CONSOLIDER CSD 2007_00067 GRACCIE; also the Andalusian Government for “P10-RNM-5958,” the Extremadura Government for “PRI BS10008,” the Catalan Government AGAUR for “2009SGR1102” and “2014SGR1274” and the Health Department of the Castilla y León Government, RACYL. This work is contributing to the ICTA “Unit of Excellence” (MinECo, MDM2015-0552).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Concepción De Linares.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Linares, C., Delgado, R., Aira, M.J. et al. Changes in the Mediterranean pine forest: pollination patterns and annual trends of airborne pollen. Aerobiologia 33, 375–391 (2017). https://doi.org/10.1007/s10453-017-9476-4

Download citation

Keywords

  • Pinus pollen
  • Environment and climate change
  • Flowering intensity
  • Annual trends
  • Pollination patterns