Aronne, G., Cavuoto, D., & Eduardo, P. (2001). Classification and counting of fluorescent pollen using an image analysis system. Biotechnic and Histochemistry,
76, 35–40.
CAS
Article
Google Scholar
Bechar, A., Gan-Mor, S., Vaknin, Y., Shemulevich, I., Ronen, B., & Eisikowitch, D. (1997). An image-analysis technique for accurate counting of pollen on stigmas. New Phytologist,
137, 639–643.
Article
Google Scholar
Bennett, K. D. (1990). Pollen counting on a pocket computer. New Phytologist,
114, 275–280.
Article
Google Scholar
Chen, C., Hendriks, E. A., Duin, R. P. W., Reiber, J. H. C., Hiemstra, P. S., de Weger, L. A., et al. (2006). Feasibility study on automated recognition of allergenic pollen: Grass, birch and mugwort. Aerobiologia,
22, 275–284.
Article
Google Scholar
Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., & Clot, B. (2016). All-optical automatic pollen identification: Towards an operational system. Atmospheric Environment,
140, 202–212.
CAS
Article
Google Scholar
Galan, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., Brandao, R., EAS QC Working Group. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,
30, 385–395.
Article
Google Scholar
Gottardini, E., Rossi, S., Cristofolini, F., & Benedetti, L. (2007). Use of Fourier transform infrared (FT-IR) spectroscopy as a tool for pollen identification. Aerobiologia,
23, 211–219.
Article
Google Scholar
Harder, L. D. (1990). Pollen removal by bumblebees and its implications for pollen dispersal. Ecology,
71, 1110–1125.
Article
Google Scholar
Healy, D. A., O’Connor, D. J., Burke, A. M., & Sodeau, J. R. (2012). A laboratory assessment of the waveband integrated bioaerosol sensor (WIBS-4) using individual samples of pollen and fungal spore material. Atmospheric Environment,
60, 534–543.
CAS
Article
Google Scholar
Hinz, K. P., Greweling, M., Drews, F., & Spengler, B. (1999). Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles. Journal of the American Society for Mass Spectrometry,
10, 648–660.
CAS
Article
Google Scholar
Kawashima, S., & Takahashi, Y. (1995). Modelling and simulation of mesoscale dispersion processes for airborne cedar pollen. Grana,
34, 142–150.
Article
Google Scholar
Kawashima, S., & Takahashi, Y. (1999). An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana,
38, 316–324.
Article
Google Scholar
Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., & Nakamura, K. (2007). An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment,
41, 7987–7993.
CAS
Article
Google Scholar
Kiselev, D., Bonacina, L., & Wolf, J.-P. (2011). Individual bioaerosol particle discrimination by multi-photon excited fluorescence. Optics Express,
19, 24516–24521.
CAS
Article
Google Scholar
Kiselev, D., Bonacina, L., & Wolf, J.-P. (2013). A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Review of Scientific Instruments,
84, 033302.
Article
Google Scholar
Landsmeer, S. H., Hendriks, E. A., De Weger, L. A., Reiber, J. H. C., & Stoel, B. C. (2009). Detection of pollen grains in multifocal optical microscopy images of air samples. Microscopy Research and Technique,
72, 424–430.
Article
Google Scholar
Longhi, S., Cristofori, A., Gatto, P., Cristofolini, F., Grando, M. S., & Gottardini, E. (2009). Biomolecular identification of allergenic pollen: A new perspective for aerobiological monitoring? Annals of Allergy, Asthma & Immunology,
103, 508–514.
CAS
Article
Google Scholar
Marcos, J. V., Nava, R., Cristóbal, G., Redondo, R., Escalante-Ramírez, B., Bueno, G., et al. (2015). Automated pollen identification using microscopic imaging and texture analysis. Micron,
68, 36–46.
Article
Google Scholar
Mishchenko, M. I., Hovenier, J. W., & Travis, L. D. (2000). Light scattering by nonspherical particles: Theory, measurements, and applications. San Diego: Academic Press.
Google Scholar
Mitsumoto, K., Yabusaki, K., Kobayashi, K., & Aoyagi, H. (2010). Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence. Aerobiologia,
26, 99–111.
Article
Google Scholar
O’Connor, D. J., Healy, D. A., & Sodeau, J. R. (2013). The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (waveband integrated bioaerosol sensor) technique. Atmospheric Environment,
80, 415–425.
Article
Google Scholar
O’Connor, D. J., Healy, D. A., Hellebust, S., Buters, J. T. M., & Sodeau, J. R. (2014). Using the WIBS-4 (waveband integrated bioaerosol sensor) technique for the on-line detection of pollen grains. Aerosol Science and Technology,
48, 341–349.
Article
Google Scholar
Oteros, J., Pusch, G., Weichenmeier, I., Heimann, U., Möller, R., Röseler, S., et al. (2015). Automatic and online pollen monitoring. International Archives of Allergy and Immunology,
167, 158–166.
Article
Google Scholar
Ranzato, M., Taylor, P. E., House, J. M., Flagan, R. C., LeCun, Y., & Perona, P. (2007). Automatic recognition of biological particles in microscopic images. Pattern Recognition Letters,
28, 31–39.
Article
Google Scholar
Rittenour, W. R., Hamilton, R. G., Beezhold, D. H., & Green, B. J. (2012). Immunologic, spectrophotometric and nucleic acid based methods for the detection and quantification of airborne pollen. Journal of Immunological Methods,
383, 47–53.
CAS
Article
Google Scholar
Stanley, W. R., Kaye, P. H., Foot, V. E., Barrington, S. J., Gallagher, M., & Gabey, A. (2011). Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle spectrometer. Atmospheric Science Letters,
12, 195–199.
Article
Google Scholar
Takahashi, Y., Aoyama, M., Abe, E., Aita, T., Kawashima, S., Ohta, N., et al. (2008). Development of electron spin resonance radical immunoassay for measurement of airborne orchard grass (Dactylis glomerata) pollen antigens. Aerobiologia,
24, 53–59.
Article
Google Scholar
Wagner, J., & Macher, J. (2012). Automated spore measurements using microscopy, image analysis, and peak recognition of near-monodisperse aerosols. Aerosol Science and Technology,
46, 862–873.
CAS
Article
Google Scholar
Xu, R. (2000). Particle characterization: Light-scattering methods. Dordrecht: Kluwer Academic Publishers.
Google Scholar
Young, H. J., & Stanton, M. L. (1990). Influences of floral variation on pollen removal and seed production in wild radish. Ecology,
71, 536–547.
Article
Google Scholar