, Volume 33, Issue 1, pp 127–135 | Cite as

Next-generation sequencing revealed dominant fungal populations in collected dust from selected public school classrooms in Metro Manila

  • Marilen P. Balolong
  • Leslie Michelle M. Dalmacio
  • Mark Lester V. Magabo
  • Diane Nicole L. Sy
  • Arnold V. HallareEmail author
Original Paper


Fungal contaminants inside classrooms may increase the chance of health-related problems for school children and teachers, reducing their learning and productivity. Recent initiatives have utilized next-generation sequencing (NGS) technology in order to understand dust ecology and were used to significantly correlate some genera with health-related conditions. To our knowledge, this paper is the first report, describing the fungal community profile of collected dust using 454 pyrosequencing of the ITS region of the 18S rRNA gene from public school classrooms in Metro Manila, Philippines. Culture-dependent technique was done by gravimetric sampling on Sabouraud Dextrose Agar (SDA) to note the importance of existing viable spores present in the rooms. Composite samples of settled dust from each classroom were collected and pooled to represent one sample per school. The fungal ITS rRNA genes amplified from genomic DNA with barcoded primers were sent for pyrosequencing on a 454 GS FLX titanium platform, and sequences were analyzed using the ITScan pipeline. Fungal sequences from the collected dust samples clustered in 108 operational taxonomic units (OTUs), most of which occur as singleton. The number of OTUs that correspond to fungal species varied from 16 to 29 per sample. Rarefaction curves indicated that sampling coverage was partial and that the remaining fraction of the species diversity remains to be discovered. Genera that were detected by both NGS and by cultivation on SDA include Alternaria, Aspergillus, Cladosporium and Penicillium.


Dust Fungi Public school classroom Pyrosequencing ITS 



The authors would like to thank the University of the Philippines for funding this investigation through its Enhanced Creative and Writing Research Grant (UP-ECWRG). We are also thankful to the school heads of the different public schools for granting us permission to obtain dust samples from their classrooms, which were utilized in the present study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

10453_2016_9455_MOESM1_ESM.pdf (143 kb)
Supplementary material 1 (PDF 143 kb)


  1. Abarca, M. L., Accensi, F., Cano, J., & Cabanes, F. J. (2004). Taxonomy and significance of black aspergilli. Antonie van Leeuwenhoek, 86, 33–39.CrossRefGoogle Scholar
  2. Adams, R. I., Miletto, M., Lindow, S. E., Taylor, J. W., & Bruns, T. D. (2014). Airborne bacterial communities in residences: Similarities and differences with fungi. PLoS ONE, 9(3), e91283.CrossRefGoogle Scholar
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.CrossRefGoogle Scholar
  4. Amend, A. S., Seifert, K. A., Samson, R. A., & Bruns, T. D. (2010). Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the Natural Academy of Sciences USA, 107, 13748–13753.CrossRefGoogle Scholar
  5. Araujo, R., Cabral, J. P., & Rodrigues, A. G. (2008). Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels. American Journal Infection Control, 36, 129–134.CrossRefGoogle Scholar
  6. Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H., Dunn, R. R., et al. (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the Natural Academy of Sciences USA, 112, 5756–5761.CrossRefGoogle Scholar
  7. Bayer, D. M., Wuest, P. J., & Kremser, J. J. (2000). Evaluation of epidemiological factors and mushroom substrate characteristics influencing the occurrence and development of Trichoderma green mold. Science and Cultivation of Edible fungi: Mushroom Science, 15(2), 633–640.Google Scholar
  8. Burge, P. S. (2004). Sick building syndrome. Occupational and Environmental Medicine, 61, 185–190.CrossRefGoogle Scholar
  9. Butte, W., & Heinzow, B. (2002). Pollutants in house dust as indicators of indoor contamination. Reviews of Environmental Contamination and Toxicology, 175, 1–46.Google Scholar
  10. Cooley, J. D., Wong, W. C., Jumper, C. A., & Strauss, D. C. (1998). Correlation between the prevalence of certain fungi and sick building syndrome. Occupational and Environmental Medicine, 55, 579–584.CrossRefGoogle Scholar
  11. Dannemiller, K. C., Lang-Yona, N., Yamamoto, N., Rudich, Y., & Peccoa, J. (2014). Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmospheric Environment, 84, 113–121.CrossRefGoogle Scholar
  12. Dixit, A., Clardy, S., Lewis, W. H., & Wedner, H. J. (1996). A comparison of post-flooding fungal contamination and related health-effects in reoccupied buildings in Western and Eastern Missouri. Journal of Allergy and Clinical Immunology, 97(1), 221.CrossRefGoogle Scholar
  13. Dotterud, L. K., Vorland, L. H., & Falk, E. S. (1995). Viable fungi in indoor air in homes and schools in the Sør-Varanger community during winter. Pediatric Allergy and Immunology, 6, 181–186.CrossRefGoogle Scholar
  14. Ferro, M., Antonio, E. A., Souza, W., & Bacci, M., Jr. (2014). ITScan: A web-based analysis tool for internal transcribed spacer (ITS) sequences. BMC Research Notes, 7, 857.CrossRefGoogle Scholar
  15. Galan, C. M. U., Gamiao, L. D. D., Banaay, C. G. B., Balolong, M. P., Dalmacio, L. M. M., & Hallare, A. V. (2013). Comparison of the fungal profile of the aquaculture and non-aquaculture water in Taal Lake, Batangas, Philippines through PCR- DGGE of the 18S rRNA gene. Journal of Nature Studies, 12(2), 18–30.Google Scholar
  16. Herbarth, O., Schlink, U., Müller, A., & Richter, M. (2003). Spatiotemporal distribution of airborne mold spores in apartments. Mycological Research, 107, 1361–1371.CrossRefGoogle Scholar
  17. Hoesini, M., Jabbari, H., Naddafi, K., Nabizadeh, R., Rahbar, M., Yunesian, M., et al. (2013). Concentration and distribution characteristics of airborne fungi in indoor and outdoor air of Tehran subway stations. Aerobiologia, 29, 355–363.CrossRefGoogle Scholar
  18. Jo, W. K., & Seo, Y. J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools and homes. Chemosphere, 61, 1570–1579.CrossRefGoogle Scholar
  19. Jones, A. P. (1998). Asthma and domestic air quality. Social Science and Medicine, 47, 755–764.CrossRefGoogle Scholar
  20. Jurado, S. R., Bankoff, A. D. P., & Sanchez, A. (2014). Indoor air quality in Brazilian universities. International Journal of Environmental Research and Public Health, 11, 7081–7093.CrossRefGoogle Scholar
  21. Karbowsa-Berent, J., Gorny, R. L., Strzelczyk, A. B., & Wlazlo, A. (2011). Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46, 1872–1879.CrossRefGoogle Scholar
  22. Katoh, M., & Kuma, M. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.CrossRefGoogle Scholar
  23. Katra, I., Arotkser, L., Krasnov, H., Zaritsky, A., Kushmaro, A., & Ben-Dov, E. (2014). Richness and diversity in dust stormborne biomes at the Southeast Mediterranean. Scientific Reports, 4, 5265. doi: 10.1038/srep05265.CrossRefGoogle Scholar
  24. Lindahl, B. D., Nilsson, R. H., Tedersoo, L., Abarenkov, K., Carlsen, T., Kjøller, R., et al. (2013). Fungal community analysis by high-throughput sequencing of amplified markers—A user’s guide. New Phytologist, 199(1), 288–299.CrossRefGoogle Scholar
  25. Links, M. G., Chaban, B., Hemmingsen, S. M., Muirhead, K., & Hill, J. E. (2013). mPUMA: A computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences. Microbiome, 1, 23.CrossRefGoogle Scholar
  26. Liu, P., Wang, X. H., Li, J. G., Qin, W., Xiao, C. Z., Zhao, X., et al. (2015). Pyrosequencing reveals fungal communities in the rhizophere of Xinjiang Jujube. BioMed Research International,. doi: 10.1155/2015/972481.Google Scholar
  27. Mandal, J., & Brandl, H. (2011). Bioaerosols in indoor environment—A review with special reference to residential and occupational locations. The Open Environmental and Biological Monitoring Journal, 4, 83–96.CrossRefGoogle Scholar
  28. Meklin, T., Putus, T., Pekkanen, J., Hyvärinen, A., Hirvonen, M. R., & Nevalainen, A. (2005). Effects of moisture-damage repairs on microbial exposure and symptoms in school children. Indoor Air, 15(Supp. 10), 40–47.CrossRefGoogle Scholar
  29. Nilsson, R. H., Abarenkov, K., Veldre, V., Nylinder, S., Wit, P., Brosché, S., et al. (2010). An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 10, 1076–1081.CrossRefGoogle Scholar
  30. Papadopoμlos, A., Vlachogiannis, D., Maggos, T., Sfetsos, A., & Karatiannis, M. (2013). A semi-quantitative approach for analysing low-volatile organic compounds in house dust using an SFE method: Significant common features and particular differences of the extracts. The Journal of Supercritical Fluids, 82, 268–281.CrossRefGoogle Scholar
  31. Pitkäranta, M., Meklin, T., Hyvärinen, A., Nevalainen, A., Paulin, L., Auvinen, P., et al. (2011). Molecular profiling of fungal communities in moisture damaged buildings before and after remediation-a comparison of culture-dependent and culture-independent methods. BMC Microbiology, 11, 235.CrossRefGoogle Scholar
  32. Pitkaranta, M., Meklin, T., Hyvarinen, A., Paulin, L., Auvinen, P., Nevalainen, A., et al. (2008). Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR and culture. Applied and Environmental Microbiology, 74(1), 233–244.CrossRefGoogle Scholar
  33. Ramachandran, G., Adgate, J. L., Banerjee, S., Church, T. R., Jones, D., Fredrickson, A., et al. (2005). Indoor air quality in two urban elementary schools—Measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity. Journal of Occupational and Environmental Hygiene, 2, 553–566.CrossRefGoogle Scholar
  34. Rintala, H., Pitkäranta, M., & Täubel, M. (2012). Microbial communities associated with house dust. Advances in Applied Microbiology, 78, 75–120.CrossRefGoogle Scholar
  35. Roberts, J. W., & Dickey, P. (1995). Exposure of children to pollutants in house dust and indoor air. Reviews of Environmental Contamination and Toxicology, 143, 59–78.Google Scholar
  36. Schloss, P. D., & Westcott, S. L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environmental Microbiology, 77(10), 3219–3226.CrossRefGoogle Scholar
  37. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.CrossRefGoogle Scholar
  38. Schmit, J. P., & Mueller, G. M. (2007). An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation, 16, 99–111.CrossRefGoogle Scholar
  39. Smith, K. R., Samet, J. M., Romieu, I., & Bruce, N. (2000). Indoor air pollution developing countries and acute lower respiratory infections in children. Thorax, 55, 518–522.CrossRefGoogle Scholar
  40. Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D., Huse, S. M., Neal, P. R., et al. (2006). Microbial diversity in the deep-sea and the underexplored “rare biosphere”. Proceedings of the Natural Academy of Sciences USA, 103, 12115–12120.CrossRefGoogle Scholar
  41. Suárez-Martínez, E. B., González-Santos, M., & Montealegre, F. (2006). Evaluation of extraction methods for the isolation of dust mites, bacterial and fungal PCR-quality DNA from indoor environmental dust samples: A new scope for indoors research. Journal of Environmental Health Research, 5(2), 105–110.Google Scholar
  42. Visagie, C. M., Hirooka, Y., Tanney, J. B., Whitfield, E., Mwange, K., Meijer, M., et al. (2014). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology, 78, 63–139.CrossRefGoogle Scholar
  43. Wang, B. L., Tikigawa, T., Yamasaki, Y., Sakano, N., Wang, D. H., & Ogino, K. (2008). Symptom definitions for SBS (Sick Building Syndrome) in residential dwellings. International Journal of Hygiene and Environmental Health, 211, 114–120.CrossRefGoogle Scholar
  44. Weikl, F., Tischer, C., Probst, A. J., Heinrich, J., Markevych, I., Johcner, S., et al. (2016). Fungal and bacterial communities in indoor dust follow different environmental determinants. PLoS ONE, 11(4), e0154131.CrossRefGoogle Scholar
  45. Zhang, X., Zhao, Z., Nordquist, T., Larsson, L., Sebastian, A., & Norback, D. (2011). A longitudinal study of sick building syndrome among pupils in relation to microbial components in dust in schools in China. Science of the Total Environment, 409(24), 5253–5259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marilen P. Balolong
    • 1
    • 2
  • Leslie Michelle M. Dalmacio
    • 3
  • Mark Lester V. Magabo
    • 1
  • Diane Nicole L. Sy
    • 1
  • Arnold V. Hallare
    • 1
    Email author
  1. 1.Department of Biology, College of Arts and SciencesUniversity of the Philippines ManilaManilaPhilippines
  2. 2.Laboratory of Industrial Microbiology and Biotechnology, School of Bio-Resources ScienceDankook UniversityYonginRepublic of Korea
  3. 3.Department of Biochemistry and Molecular Biology, College of MedicineUniversity of the Philippines ManilaManilaPhilippines

Personalised recommendations