Skip to main content

Molecular analysis of environmental plant DNA in house dust across the United States

Abstract

Despite the prevalence and costs of allergic diseases caused by pollen, we know little about the distributions of allergenic and non-allergenic pollen inside and outside homes at the continental scale. To better understand patterns in potential pollen diversity across the United States, we used DNA sequencing of a chloroplast marker gene to identify the plant DNA found in settled dust collected on indoor and outdoor surfaces across 459 homes. House location was the best predictor of the relative abundance of plant taxa found in outdoor dust samples. Urban, southern houses in hotter climates that were further from the coast were more likely to have more DNA from grass and moss species, while rural houses in northern, cooler climates closer to the coast were more likely to have higher relative abundances of DNA from Pinus and Cedrus species. In general, those plant taxa that were more abundant outdoors were also more abundant indoors, but indoor dust had uniquely high abundances of DNA from food plants and plants associated with lawns. Approximately 14 % of the plant DNA sequences found outside were from plant taxa that are known to have allergenic pollen compared to just 8 % inside. There was little geographic pattern in the total relative abundance of these allergens highlighting the difficulties associated with trying to predict allergen exposures based on geographic location alone. Together, this work demonstrates the utility of using environmental DNA sequencing to reconstruct the distributions of plant DNA inside and outside buildings, an approach that could prove useful for better understanding and predicting plant allergen exposures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46.

    Google Scholar 

  2. Barberán, A., Dunn, R. R., Reich, B. J., Pacifici, K., Laber, E. B., Menninger, H. L., et al. (2015a). The ecology of microscopic life in household dust. Proceedings of the Royal Society B-Biological Sciences,. doi:10.1098/rspb.2015.1139.

    Google Scholar 

  3. Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H. L., Dunn, R. R., et al. (2015b). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Science of the United States of America, 112(18), 5756–5761. doi:10.1073/pnas.1420815112.

    Article  Google Scholar 

  4. Bruni, I., Galimberti, A., Caridi, L., Scaccabarozzi, D., De Mattia, F., Casiraghi, M., et al. (2015). A DNA barcoding approach to identify plant species in multiflower honey. Food Chemistry, 170, 308–315. doi:10.1016/j.foodchem.2014.08.060.

    CAS  Article  Google Scholar 

  5. Burge, H. A. (2002). An update on pollen and fungal spore aerobiology. Journal of Allergy and Clinical Immunology, 110(4), 544–552. doi:10.1067/mai.2002.128674.

    Article  Google Scholar 

  6. Campbell, I. D., McDonald, K., Flannigan, M. D., & Kringayark, J. (1999). Long-distance transport of pollen into the Arctic. Nature, 399(6731), 29–30.

    CAS  Article  Google Scholar 

  7. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621–1624.

    CAS  Article  Google Scholar 

  8. Cecchi, L., Morabito, M., Domeneghetti, P., Crisci, A., Onorari, M., & Orlandini, S. (2006). Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Annals of Allergy, Asthma & Immunology, 96(1), 86–91.

    Article  Google Scholar 

  9. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990. doi:10.1111/j.1398-9995.2007.01393.x.

    Article  Google Scholar 

  10. Denning, D., O’Driscoll, B., Hogaboam, C., Bowyer, P., & Niven, R. (2006). The link between fungi and severe asthma: A summary of the evidence. European Respiratory Journal, 27(3), 615–626.

    CAS  Article  Google Scholar 

  11. Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366.

    Google Scholar 

  12. Dunwiddie, P. W. (1987). Macrofossil and pollen representation of coniferous trees in modern sediments from Washington. Ecology, 68(1), 1–11.

    Article  Google Scholar 

  13. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461.

    CAS  Article  Google Scholar 

  14. Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998.

    CAS  Article  Google Scholar 

  15. Esch, R. E., Hartsell, C. J., Crenshaw, R., & Jacobson, R. S. (2001). Common allergenic pollens, fungi, animals, and arthropods. Clinical Reviews in Allergy and Immunology, 21(2), 261–292.

    CAS  Article  Google Scholar 

  16. Fahlbusch, B., Hornung, D., Heinrich, J., Dahse, H. M., & Jäger, L. (2000). Quantification of group 5 grass pollen allergens in house dust. Clinical and Experimental Allergy, 30(11), 1646–1652.

    Article  Google Scholar 

  17. Fahlbusch, B., Hornung, D., Heinrich, J., & Jäger, L. (2001). Predictors of group 5 grass-pollen allergens in settled house dust: Comparison between pollination and nonpollination seasons. Allergy, 56(11), 1081–1086. doi:10.1034/j.1398-9995.2001.00106.x.

    CAS  Article  Google Scholar 

  18. Gavin, D. G., Brubaker, L. B., McLachlan, J. S., & Oswald, W. W. (2005). Correspondence of pollen assemblages with forest zones across steep environmental gradients, Olympic Peninsula, Washington, USA. The Holocene, 15(5), 648–662.

    Article  Google Scholar 

  19. Grantham, N. S., Reich, B. J., Pacifici, K., Laber, E. B., Menninger, H. L., Henley, J. B., et al. (2015). Fungi identify the geographic origin of dust samples. PLoS One, 10(4), e0122605. doi:10.1371/journal.pone.0122605.

    Article  Google Scholar 

  20. Heusser, C. J. (1978). Modern pollen rain of Washington. Canadian Journal of Botany, 56(13), 1510–1517.

    Article  Google Scholar 

  21. Hjelmroos, M. (1991). Evidence of long-distance transport of Betula pollen. Grana, 30(1), 215–228.

    Article  Google Scholar 

  22. Hugg, T., & Rantio-Lehtimäki, A. (2007). Indoor and outdoor pollen concentrations in private and public spaces during the Betula pollen season. Aerobiologia, 23(2), 119–129. doi:10.1007/s10453-007-9057-z.

    Article  Google Scholar 

  23. Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., et al. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231–252.

    CAS  Article  Google Scholar 

  24. Kress, W. J., Garcia-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution, 30(1), 25–35. doi:10.1016/j.tree.2014.10.008.

    Article  Google Scholar 

  25. Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271–280.

    Article  Google Scholar 

  26. McLauchlan, K. K., Commerford, J. L., & Morris, C. J. (2013). Tallgrass prairie pollen assemblages in mid-continental North America. Vegetation History and Archaeobotany, 22(3), 171–183.

    Article  Google Scholar 

  27. O’Rourke, M. K., & Lebowitz, M. D. (1984). A comparison of regional atmospheric pollen with pollen collected at and near homes. Grana, 23(1), 55–64.

    Article  Google Scholar 

  28. Pawankar, R., Canonica, G. W., Holgate, S. T., & Lockey, R. F. (2012). Allergic diseases and asthma: A major global health concern. Current Opinion in Allergy and Clinical Immunology, 12(1), 39–41. doi:10.1097/ACI.0b013e32834ec13b.

    Article  Google Scholar 

  29. Pichot, C., Calleja, M., Penel, V., Bues-Charbit, M., & Charpin, D. (2015). Inference of the pollen penetration and remanence into dwellings using seasonal variation of indoor/outdoor pollen counts. Aerobiologia, 31(3), 315–322. doi:10.1007/s10453-015-9366-6.

    Article  Google Scholar 

  30. Richardson, R. T., Lin, C. H., Sponsler, D. B., Quijia, J. O., Goodell, K., & Johnson, R. M. (2015). Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in plant Sciences,. doi:10.3732/apps.1400066.

    Google Scholar 

  31. Rogers, C. A., & Levetin, E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology, 42(2), 65–72.

    Article  Google Scholar 

  32. Salvatori, N., Reccardini, F., Convento, M., Purinan, A., Colle, R., De Carli, S., et al. (2008). Asthma induced by inhalation of flour in adults with food allergy to wheat. Clinical and Experimental Allergy, 38(8), 1349–1356.

    CAS  Article  Google Scholar 

  33. Sicherer, S. H., Furlong, T. J., DeSimone, J., & Sampson, H. A. (1999). Self-reported allergic reactions to peanut on commercial airliners. Journal of Allergy and Clinical Immunology, 104(1), 186–189.

    CAS  Article  Google Scholar 

  34. Sterling, D. A., & Lewis, R. D. (1998). Pollen and fungal spores indoor and outdoor of mobile homes. Annals of Allergy, Asthma & Immunology, 80(3), 279–285.

    CAS  Article  Google Scholar 

  35. Sugita, S. (1993). A model of pollen source area for an entire lake surface. Quaternary Research, 39(2), 239–244.

    Article  Google Scholar 

  36. Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., et al. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3), e14. doi:10.1093/nar/gkl938.

    Article  Google Scholar 

  37. Takahashi, Y., Takano, K., Suzuki, M., Nagai, S., Yokosuka, M., Takeshita, T., et al. (2008). Two routes for pollen entering indoors: Ventilation and clothes. Journal of Investigational Allergology and Clinical Immunology, 18, 382–388.

    CAS  Google Scholar 

  38. Taylor, P. E., Flagan, R. C., Valenta, R., & Glovsky, M. M. (2002). Release of allergens as respirable aerosols: A link between grass pollen and asthma. Journal of Allergy and Clinical Immunology, 109(1), 51–56.

    Article  Google Scholar 

  39. WAO. (2011). World allergy organization white book on allergy. Milwaukee: World Allergy Organization.

    Google Scholar 

  40. Yoshimura, Y. (2011). Wind tunnel and field assessment of pollen dispersal in Soybean [Glycine max (L.) Merr.]. Journal of Plant Research, 124(1), 109–114.

    Article  Google Scholar 

  41. Zavada, M. S., McGraw, S. M., & Miller, M. A. (2007). The role of clothing fabrics as passive pollen collectors in the north-eastern United States. Grana, 46(4), 285–291. doi:10.1080/00173130701780104.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the volunteers who participated in the Wild Life of Our Homes project for collecting dust samples. Funding for the sample collection was provided by a grant from the A. P. Sloan Microbiology of the Built Environment Program (to NF and RRD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Craine.

Appendix

Appendix

See Table 7.

Table 7 Paired Mann–Whitney tests for top 100 taxa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Craine, J.M., Barberán, A., Lynch, R.C. et al. Molecular analysis of environmental plant DNA in house dust across the United States. Aerobiologia 33, 71–86 (2017). https://doi.org/10.1007/s10453-016-9451-5

Download citation

Keywords

  • Environmental DNA
  • Plant allergens
  • Geography
  • Next-generation sequencing