Abstract
We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central-northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.
Similar content being viewed by others
References
Agrios, G. N. (1997). Plant pathology. San Diego: Academic Press.
Balkovic, J., van der Velde, M., Schmid, E., Skalsky, R., Khabarov, N., Obersteiner, M., et al. (2013). Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems, 120, 61–75.
Beggs, P. J. (2004). Impacts of climate change on aeroallergens: Past and future. Clinical and Experimental Allergy, 34, 1507–1513.
Behbod, B., Sordillo, J. E., Hoffman, E. B., Datta, S., Webb, T. E., Kwan, D. L., et al. (2015). Asthma and allergy development: Contrasting influences of yeasts and other fungal exposures. Clinical and Experimental Allergy, 45, 154–163.
Berman, D. (2011). Climate change and aeroallergens in South Africa. Current Allergy and Clinical Immunology, 24, 65–71.
Burbach, G. J., Heinzerling, L. M., Edenharter, G., Bachert, C., Bindslev-Jensen, C., Bonini, S., et al. (2009). GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy, 64, 1507–1515.
Burshtein, N., Lang-Yona, N., & Rudich, Y. (2011). Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean. Atmospheric Chemistry and Physics, 11, 829–839.
Bush, R. K., & Prochnau, J. J. (2004). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113, 227–234.
Cecchi, L., D’amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy, 65, 1073–1081.
Cooter, E. J., Bash, J. O., Benson, V., & Ran, L. (2012). Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments. Biogeosciences, 9, 4023–4035.
Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19, 191–199.
Crameri, R., Garbani, M., Rhyner, C., & Huitema, C. (2014). Fungi: The neglected allergenic sources. Allergy, 69, 176–185.
Dales, R. O. B. E., Cakmak, S. A. B. I., Burnett, R. I. C. H., Judek, S. T. A. N., Coates, F. R. A. N., & Brook, J. E. F. F. (2000). Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. American Journal of Respiratory and Critical Care Medicine, 162, 2087–2090.
Damialis, A., Mohammad, A., Halley, J., & Gange, A. (2015a). Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59, 1157–1167.
Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015b). Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecology, 13, 150–156.
De Linares, C., Belmonte, J., Canela, M., de la Guardia, C. D., Alba-Sanchez, F., Sabariego, S. A., & Nso-Perez, S. (2010). Dispersal patterns of Alternaria conidia in Spain. Agricultural and Forest Meteorology, 150, 1491–1500.
Deen, W., Swanton, C. J., & Hunt, L. A. (2001). A mechanistic growth and development model of common ragweed. Weed Science, 49, 723–731.
Denning, D. W., Pashley, C. H., Hartl, D., Wardlaw, A., Godet, C., Giacco, S. D., et al. (2014). Fungal allergy in asthma—state of the art and research needs. Clinical Biochemistry, 4, 1–23.
Draxler, R., Stunder, B., Rolph, G., & Stein, A., & Taylor, A. (2014). Hysplit4 users guide. Revision September 2014. http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf.
Dupuy, N. (2007). Lecture de spores fongiques. Technical Report, Reseau National de Surveillance Aerobiolique, Lyon.
Escuredo, O., Seijo, M., Fernández-González, M., & Iglesias, I. (2011). Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology, 55, 243–252.
European Commission. (2005). Image2000 and CLC2000 products and methods. European Commission, Joint Research Center (DG JRC), Institute for Environment and Sustainability, Land Management Unit, I-21020 Ispra, VA.
Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C. A., Maya-Manzano, J. M., et al. (2015). Potential sources of airborne Alternaria spp. spores in South-west Spain. Science of the Total Environment, 533, 165–176.
Friesen, T. L., De Wolf, E. D., & Francl, L. J. (2001). Source strength of wheat pathogens during combine harvest. Aerobiologia, 17, 293–299.
Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.
Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F., Giouleka, P., & Patakas, D. (2004). Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. J Invest Allergo Clin Imm, 14, 225–231.
Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34, 135–154.
Gravesen, S., Frisvad, J. C., & Samson, R. A. (1994). Microfungi: Munksgaard. Copenhagen: Denmark. ISBN 9788716114365.
Grewling, Ł., Šikoparija, B., Skjøth, C. A., Radišić, P., Apatini, D., Magyar, D., et al. (2012). Variation in Artemisia pollen seasons in Central and Eastern Europe. Agricultural and Forest Meteorology, 160, 48–59.
Grinn-Gofron, A., & Strzelczak, A. (2008). Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland). International Journal of Biometeorology, 52, 859–868.
Gundel, P. E., Garibaldi, L. A., Helander, M., & Saikkonen, K. (2013). Symbiotic interactions as drivers of trade-offs in plants: Effects of fungal endophytes on tall fescue. Fungal Diversity, 60, 5–14.
Gyldenkærne, S., Ambelas Skjøth, C., Hertel, O., & Ellermann, T. (2005). A dynamical ammonia emission parameterization for use in air pollution models. Journal Geophysical Research, 110, 1–14. doi:10.1029/2004JD005459.
Hatzipapas, P., Kaloskak, K., Dara, A., & Christias, C. (2002). Spore germination and appressorium formation in the entomopathogenic Alternaria alternata. Mycological Research, 106(11), 1349–1359.
Hauptman, T., Pitcairn, C. E. R., de Groot, M., Ogris, N., Ferlan, M., & Jurc, D. (2013). Temperature effect on Chalara fraxinea: Heat treatment of saplings as a possible disease control method. Forest Pathology, 43, 360–370.
Helfer, S. (2014). Rust fungi and global change. New Phytologist, 201, 770–780.
Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.
Hoose, C., & Möhler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics Discussions, 12, 12531–12621.
Iglesias, I., Rodríguez-Rajo, F., & Méndez, J. (2007). Evaluation of the different Alternaria prediction models on a potato crop in A Limia (NW of Spain). Aerobiologia, 23, 27–34.
Käpyla, M., & Penttinen, A. (1981). An evaluation of the microscopial counting methods of the tape in Hirst–Burkard pollen and spore trap. Grana, 20, 131–141.
Karrer, G., Skjøth, C. A., Šikoparija, B., Smith, M., Berger, U., & Essl, F. (2015). Ragweed (Ambrosia) pollen source inventory for Austria. Science of the Total Environment, 523, 120–128.
Kasprzyk, I., Rodinkova, V., Sauliene, I., Ritenberga, O., Grinn-Gofron, A., Nowak, M., et al. (2015). Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environmental Science and Pollution Research, 22, 9260–9274.
Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.
Kirtman, B., Power, S. B., Adedovin, J. A., Boer, G. J., Bojarju, R., Camiloni, I., et al. (2013). Near-term climate change: Projections and predictability. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Knutsen, A. P., Bush, R. K., Demain, J. G., Denning, D. W., Dixit, A., Fairs, A., et al. (2012). Fungi and allergic lower respiratory tract diseases. Journal of Allergy and Clinical Immunology, 129, 280–291.
Makra, L., Santa, T., Matyasovszky, I., Damialis, A., Karatzas, K., Bergmann, K. C., et al. (2010). Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. Journal Geophysical Research. doi:10.1029/2010JD014743.
Mari, A., Schneider, P., Wally, V., Breitenbach, M., & Simon-Nobbe, B. (2003). Sensitization to fungi: Epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clinical and Experimental Allergy, 33, 1429–1438.
Maya-Manzano, J., Fernández-Rodriguez, S., Hernández-Trejo, F., Díaz-Peres, G., Gonzalo-Garijo, Á., Silva-Palacios, I., et al. (2012). Seasonal Mediterranean pattern for airborne spores of Alternaria. Aerobiologia, 28, 515–525.
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87, 291–300.
Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20, 179–182.
Oerke, E. C., & Dehne, H. W. (2004). Safeguarding production-losses in major crops and the role of crop protection. Crop Protection, 23, 275–285.
Olesen, J. E., & Plauborg, F. (1995). MVTOOL version 1.10 for developing MARKVAND. SP Rep. 27, Danish Institute of Plant and Soil Science, Tjele.
Paldy, A., Bobvos, J., Fazekas, B., Manyoki, G., Malnasi, T., & Magyar, D. (2014). Characterisation of the pollen season by using climate specific pollen indicators. Central European Journal of Occupational and Environmental Medicine, 20, 199–214.
Pashley, C., Fairs, A., Edwards, R., Bailey, J., Corden, J., & Wardlaw, A. (2009). Reproducibility between counts of airborne allergenic pollen from two cities in the East Midlands, UK. Aerobiologia, 25, 249–263.
Poorter, H., van de Vijver, C. A. D. M., Boot, R. G. A., & Lambers, H. (1995). Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Pland and Soil, 171(2), 217–227.
Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.
Sadyś, M., Skjøth, C. A., & Kennedy, R. (2015). Determination of Alternaria spp. habitats using 7-day volumetric spore trap. Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information system. Urban Climate, 14, 429–440.
Seifert, K., Morgan-Jones, G., Gams, W., & Kendrick, B. (2011). The genera of hyphomycetes. CBS Biodiversity Series no. 9: 1–997, CBS-KNAW Fungal Biodiversity Centre, Utrecht.
Šikoparija, B., Pejak-Šikoparija, T., Radišić, P., Smith, M., & Soldevilla, C. G. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390.
Simmons, E. G. (2007). Alternaria. An identification manual (1st ed.). CBS Biodiversity Series. Utrecht
Skjøth, C. A., Baker, P., Sadyś, M., & Adams-Groom, B. (2015). Adams-Groom B. (2015). Pollen from alder (Alnus sp.), birch (Betula sp.) and oak (Quercus sp.) in the UK originate from small woodlands. Urban Climate, 14, 414–428.
Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.
Skjøth, C. A., Sommer, J., Frederiksen, L., & Gosewinkel Karlson, U. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12, 11107–11123.
Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69, 913–923.
Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Malgorzata, P., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411.
Stepalska, D., & Wolek, J. (2009). Intradiurnal periodicity of fungal spore concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow, Poland. Aerobiologia, 25, 333–340.
Su’udi, M., J-M, Park, Park, S. R., Hwang, D. J., Bae, D. J., Kim, S., & Ahn, I. P. (2013). Quantification of Alternaria brassicicola infection in the Arabidopsis thaliana and Brassica rapa subsp. pekinensis. Microbiology, 159, 1946–1955.
Suzuki, R. (2014) Hierarchical clustreing with p values via multiscale bootstrap resampling. CRAN.
Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22, 1540–1542.
R Core Team and Contributors Worldwide. (2015). The R Stats Package. https://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html.
TheLancet. (2008). Allergic rhinitis: Common, costly, and neglected. The Lancet, 371, 2057.
Thibaudon, M., Šikoparija, B., Oliver, G., Smith, M., & Skjøth, C. A. (2014). Ragweed pollen source inventory for France—the second largest centre of Ambrosia in Europe. Atmospheric Environment, 83, 62–71.
Toth, B., Csosz, M., Szabo-Hever, A., Simmons, E. G., Samson, R. A., & Varga, J. (2011). Alternaria hungarica sp., a minor foliar pathogen of wheat in Hungary. Mycologia, 103, 94–100.
Zhang, Y., Bielory, L., Cai, T., Mi, Z., & Georgopoulos, P. (2015). Predicting onset and duration of airborne allergenic pollen season in the United States. Atmospheric Environment, 103, 297–306.
Acknowledgments
Dr. C. A. Skjøth is supported by European Commission through a Marie Curie Career Integration Grant (Project ID CIG631745 and Acronym SUPREME). Dr. C. H. Pashley is supported by the Midlands Asthma and Allergy Research Association (MAARA) and the National Institute for Health Research Leicester Respiratory Biomedical Research Unit. Dr. S. Fernández-Rodríguez and Dr. R. Tormo-Molina are supported by Regional Government Science Foundation of the Junta de Extremadura through the two projects: PRI06A190, PRI BS10008. Dr. A. Damialis has been supported by the Research Committee of the Aristotle University of Thessaloniki (Excellence Fellowships of Postdoctoral Researchers, 2011). Dr. I. Kasprzyk and Dr. M. Jędryczkaare supported by National Science Centre Project No. N N305 321,737. The views expressed are those of the author(s) and not necessarily those of the European Commission, the NHS, the NIHR or the Department of Health.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Skjøth, C.A., Damialis, A., Belmonte, J. et al. Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia 32, 3–22 (2016). https://doi.org/10.1007/s10453-016-9426-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10453-016-9426-6