Aerobiologia

, Volume 32, Issue 3, pp 489–497 | Cite as

Pollen season of European beech (Fagus sylvatica L.) and temperature trends at two German monitoring sites over a more than 30-year period

  • Anke Simoleit
  • Reinhard Wachter
  • Ulrich Gauger
  • Matthias Werchan
  • Barbora Werchan
  • Torsten Zuberbier
  • Karl-Christian Bergmann
Original Paper
  • 173 Downloads

Abstract

Although beech (Fagus) pollen are often disregarded, they play an allergological role. This study focused on pollen season (PS) of European beech (Fagus sylvatica L.) and mean yearly temperatures (T) at two climatically different sites (lowlands vs. Alps) in Germany. Pollen sampling was conducted with 7-day recording volumetric spore traps between 1982 and 2014. Both PS parameters (start, peak, length, annual pollen index [PI]) and T were compared in two periods (1982–1991 and 1992–2014), and correlations between PS and T were analysed. At both sites, average PS occurred earlier in the second period. Statistically significant differences were proved at the alpine site in terms of start and peak of the season, and PI. On average, PS in the lowlands was shorter and occurred earlier than in the Alps. As is the case with a lot of temperate tree species, beeches show the masting phenomenon and PI differed greatly among the years. Mast years were much less frequent than non-mast years, and the differences between the pollen sums were significant. Average pollen counts at the alpine site were about three times higher than in the lowlands. At both sites, higher T was significantly correlated with an earlier start and peak of the season, and an increased PI. Trends of T over the years were significantly positive. Temperature increase as a part of climate change may contribute to an earlier occurrence of the flowering season of European beech and to higher airborne pollen concentrations.

Keywords

Fagussylvatica Beech pollen Pollen season Annual pollen index Mast year Climate change 

Notes

Acknowledgments

The authors are grateful to the sponsors of the monitoring site in Oberjoch, by name “Alpenklinik Santa Maria”, Bad Hindelang-Oberjoch, Germany, and “Bad Hindelang Tourismus”, Bad Hindelang, Germany. For critical review and advice, we thank Dr. Mücke, Federal Environment Agency, Berlin, Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Blomme, K., Tomassen, P., Lapeere, H., Huvenne, W., Bonny, M., Acke, F., et al. (2013). Prevalence of allergic sensitization versus allergic rhinitis symptoms in an unselected population. International Archives of Allergy and Immunology, 160, 200–207.CrossRefGoogle Scholar
  2. Bousquet, J., Bachert, C., Canonica, G. W., Casale, T. B., Cruz, A. A., Lockey, R. J., et al. (2009). Unmet needs in severe chronic upper airway disease (SCUAD). The Journal of Allergy and Clinical Immunology, 124, 428–433.CrossRefGoogle Scholar
  3. Dahl, Ǻ., Galán, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., & Vokou, D. (2013). The Onset, Course and Intensity of the Pollen Season. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 29–70). Dordrecht: Springer.CrossRefGoogle Scholar
  4. Dahl, Ǻ., & Strandhede, S.-O. (1996). Predicting the intensity of the birch pollen season. Aerobiologia, 12, 97–106.CrossRefGoogle Scholar
  5. D’Amato, G., Bergmann, K. C., Cecchi, L., Annesi-Maesano, I., Sanduzzi, A., Liccardi, G., et al. (2014). Climate change and air pollution. Effects on pollen allergy and other allergic respiratory diseases. Allergo Journal International, 23, 17–23.CrossRefGoogle Scholar
  6. Egger, C., Focke, M., Bircher, A. J., Scherer, K., Mothes-Luksch, N., Horak, F., & Valenta, R. (2008). The allergen profile of beech and oak pollen. Clinical and Experimental Allergy, 38(10), 1688–1696.CrossRefGoogle Scholar
  7. Eriksson, N. E. (1978). Allergy to pollen from different deciduous trees in Sweden. An investigation with skin tests, provocation tests and the radioallergosorbent test (RAST) in springtime hay fever patients. Allergy, 33(6), 299–309.CrossRefGoogle Scholar
  8. Eriksson, N. E., Wihl, J. A., Arrendal, H., & Strandhede, S. O. (1987). Tree pollen allergy. III. Cross reactions based on results from skin prick tests and the RAST in hay fever patients. A multi-centre study. Allergy, 42(3), 205–214.CrossRefGoogle Scholar
  9. European Environmental Agency (EEA) (2012). Climate change, impacts and vulnerability in Europe 2012. EEA-Report No 12, Copenhagen.Google Scholar
  10. Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198.CrossRefGoogle Scholar
  11. Gessler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., & Rennenberg, H. (2007). Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21(1), 1–11.CrossRefGoogle Scholar
  12. Hauser, M., Asam, C., Himly, M., Palazzo, P., Voltolini, S., Montanari, C., et al. (2011). Bet v 1-like pollen allergens of multiple Fagales species can sensitize atopic individuals. Clinical and Experimental Allergy, 41(12), 1804–1814.CrossRefGoogle Scholar
  13. Hecht, R. (1994). 3. Europäisches Pollenflug-Symposium - Bad Lippspringe - Vorträge und Berichte. In K.-C. Bergmann, Stiftung Deutscher Polleninformationsdienst (Ed.), Pollenbestimmungstechnik, Ergebniswertung und die Herausgabe von Pollenfluginformationen (pp. 21–32). Düsseldorf: Vereinigte Verlagsanstalten GmbH.Google Scholar
  14. Heide, O. M. (1993). Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiologia Plantarum, 89, 187–191. doi: 10.1111/j.1399-3054.1993.tb01804.x.CrossRefGoogle Scholar
  15. Hilton, G. M., & Packham, J. R. (2003). Variation in the masting of common beech (Fagus sylvatica L.) in northern Europe over two centuries (1800–2001). Forestry, 76, 319–328.CrossRefGoogle Scholar
  16. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  17. https://bwi.info; 77V1PI_L637mf_0212_bi
  18. Jäger, S., Mandrioli, P., Spieksma, F., Emberlin, J., Hjelmroos, M., Rantio-Lehtimaki, A., et al. (1995). News. Aerobiologia, 11, 69–70.CrossRefGoogle Scholar
  19. Jäger, S., Spieksma, E. T. M., & Nolard, N. (1991). Fluctuations and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden, and Brussels. Grana, 30(2), 309–312.CrossRefGoogle Scholar
  20. Kasprzyk, I., Ortyl, B., & Dulska-Jez, A. (2014). Relationships among weather parameters, airborne pollen and seed crops of Fagus and Quercus in Poland. Agricultural and Forest Meteorology, 197, 111–122.CrossRefGoogle Scholar
  21. Koenig, W. D., & Ashley, M. V. (2003). Is pollen limited? The answer is blowin’ in the wind. Trends in Ecology & Evolution, 18(4), 157–159.CrossRefGoogle Scholar
  22. Körner, C., & Basler, D. (2010). Plant science. Phenology under global warming. Science, 327(5972), 1461–1462.CrossRefGoogle Scholar
  23. Kovats, R. S., Valentini, R., Bouwer, L. M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M., & Soussana, J.-F. (2014). Europe. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., & White, L.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1267–1326.Google Scholar
  24. Maurer, M., & Zuberbier, T. (2007). Undertreatment of rhinitis symptoms in Europe: Findings from a cross-sectional questionnaire survey. Allergy, 62, 1057–1063.CrossRefGoogle Scholar
  25. Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Forsten. (1999). Der Hasbruch - Naturkundliche Beschreibung eines norddeutschen Waldes. Schriftenreihe Waldentwicklung in Niedersachsen, Heft 8, S. 43, Wolfenbüttel (in German).Google Scholar
  26. Nilsson, S. G., & Wästljung, U. (1987). Seed predation and cross-pollination in mast-seeding beech (Fagus sylvatica) patches. Ecology, 68, 260–265.CrossRefGoogle Scholar
  27. Övergaard, R., Gemmel, P., & Karlsson, M. (2007). Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry, 80, 553–563.CrossRefGoogle Scholar
  28. Piovesan, G., & Adams, J. M. (2001). Masting behaviour in beech: linking reproduction and climatic variation. Canadian Journal of Botany, 79, 1039–1047.CrossRefGoogle Scholar
  29. Polley, H., & Kroiher, F. (2006). Struktur und regionale Verteilung des Holzvorrates und des potenziellen Rohholzaufkommens in Deutschland im Rahmen der Clusterstudie Forst- und Holzwirtschaft. Arbeitsbericht des Instituts für Waldökologie und Waldinventuren 2006/3. Bundesforschungsanstalt für Forst- und Holzwirtschaft Hamburg, Eberswalde.Google Scholar
  30. Ranta, H., & Satri, P. (2007). Synchronized inter-annual fluctuation of flowering intensity affects the exposure to allergenic tree pollen in North Europe. Grana, 46(4), 274–284.CrossRefGoogle Scholar
  31. Satake, A., & Iwasa, Y. (2000). Pollen coupling of forest trees: Forming synchronized and periodic reproduction out of chaos. Journal of Theoretical Biology, 203, 63–84.CrossRefGoogle Scholar
  32. Schmidt, W. (2006). Temporal variation in beech masting (Fagus sylvatica L.) in a limestone beech forest (1981–2004). Allgemeine Forst und Jagdzeitung, 177, 9–19. (in German with English summary).Google Scholar
  33. Sykes, M. T., Prentice, I. C., & Cramer, W. (1996). A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography, 23(2), 203–233.Google Scholar
  34. Wiebicke, K., Schlenvoigt, G., & Jäger, L. (1987). Allergologic-immunochemical study of various tree pollens. I. Characterization of antigen and allergen components in birch, beech, alder, hazel and oak pollens. Allergie und Immunologie (Leipz), 33(3), 181–190.Google Scholar
  35. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to Airborne Pollen Counts across Europe. PLoS One,. doi: 10.1371/journal.pone.0034076.Google Scholar
  36. Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V., & Church, M. K. (2014). Economic burden of inadequate management of allergic diseases in the European Union: a GA2LEN review. Allergy, 69, 1275–1279.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anke Simoleit
    • 1
  • Reinhard Wachter
    • 2
  • Ulrich Gauger
    • 3
  • Matthias Werchan
    • 2
  • Barbora Werchan
    • 2
    • 4
    • 5
  • Torsten Zuberbier
    • 6
  • Karl-Christian Bergmann
    • 2
  1. 1.LemwerderGermany
  2. 2.Foundation German Pollen Information Service (PID)BerlinGermany
  3. 3.BerlinGermany
  4. 4.Institute of Botany of the Czech Academy of SciencesPruhoniceCzech Republic
  5. 5.Department of Dermatology, Venerology and AllergologyCharité - UniversitätsmedizinBerlinGermany
  6. 6.Allergy-Centre-CharitéCharité - Universitätsmedizin BerlinBerlinGermany

Personalised recommendations