Skip to main content

Potential impact of climate change on fungal distributions: analysis of 2 years of contrasting weather in the UK

Abstract

The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Airaksinen, M., Pasanen, P., Kurnitski, J., & Seppänen, O. (2004). Microbial contamination of indoor air due to leakages from crawl space—A field study. Indoor Air, 14(1), 55–64.

    CAS  Article  Google Scholar 

  2. Allali, A., Bojariu, R., Diaz, S., Elgizouli, I., Griggs, D., Hawkins, D. et al. (eds) (2007). Climate change 2007: Synthesis report. An assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  3. Cecchi, L., D’Amato, G. D., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergenic asthma: The contribution of aerobiology. Allergy, 65(9), 1073–1081.

    CAS  Google Scholar 

  4. Codina, R., Fox, R. W., Lockey, R. F., DeMarco, P., & Bagg, A. (2008). Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. Journal of investigational Allergology and Clinical Immunology, 18(3), 156–162.

    CAS  Google Scholar 

  5. Corden, J. M., & Millington, W. M. (2001). The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17, 127–136.

    Article  Google Scholar 

  6. D’Amato, G. D., & Cecchi, L. (2008). Effects of climate change on environmental factors in respiratory allergic diseases. Clinical and Experimental Allergy, 38, 1264–1274.

    Article  Google Scholar 

  7. D’Amato, G. D., Rottem, M., Dahl, R., Blaiss, M. S., Ridolo, E., Cecchi, L., et al. (2011). Climate change, migration, and allergic respiratory diseases: An update for the allergist. WAO Journal, 4, 121–125.

    Google Scholar 

  8. Damialis, A., Mohammad, A. B., Halley, J. M., & Gange, A. C. (2014). Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology,. doi:10.1007/s00484-014-0927-0.

    Google Scholar 

  9. Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015). Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecology, 13, 150–156.

    Article  Google Scholar 

  10. Del Mar Trigo, M., Toro, F. J., Recio, M., & Cabezudo, B. (2000). A statistical approach to comparing the results from different aerobiological stations. Grana, 39(5), 252–258.

    Article  Google Scholar 

  11. Frankland, A. W., & Davies, R. R. (1965). Allergy to mold spores in England. Le Poumon et le coeur, 21, 11–31.

    CAS  Google Scholar 

  12. Gange, A. C., Gange, E. G., Sparks, T. H., & Boddy, L. (2007). Rapid and recent changes in fungal fruiting patterns. Science, 316, 71.

    CAS  Article  Google Scholar 

  13. Heseltine, E., & Rosen, J. (2009). World Health Organisation guidelines for indoor air quality: Moulds and dampness. Copenhagen: WHO.

    Google Scholar 

  14. Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  15. Hjelmroos, M. (1993). Relationship between airborne fungal spore presence and weather variables. Cladosporium and Alternaria. Grana, 32, 40–47.

    Article  Google Scholar 

  16. Humperson-Jones, F. M., & Phelps, K. (1989). Climatic factors influencing spore production in Alternaria brassicae and Alternaria brassicicola. Annals of Applied Biology, 114, 449–458.

    Article  Google Scholar 

  17. Kauserud, H., Heegaard, E., Büntgen, U., Halvorsen, R., Egli, S., Senn-Irlet, B., et al. (2012). Warming-induced shift in European mushroom fruiting phenology. PNAS, 109(36), 14488–14493.

    CAS  Article  Google Scholar 

  18. Kauserud, H., Heegaard, E., Halvorsen, R., Boddy, L., Høiland, K., & Stenseth, N. C. (2011). Mushroom’s spore size and time of fruiting are strongly related: Is moisture important? Biology Letters, 7, 273–276.

    Article  Google Scholar 

  19. Kauserud, H., Stige, L. C., Vik, J. O., Økland, R. H., Høiland, K., & Stenseth, N. C. (2008). Mushroom fruiting and climate change. PNAS, 105(10), 3811–3814.

    CAS  Article  Google Scholar 

  20. Kennedy, R., & Smith, M. (2012). Effects of aeroallergens on human health under climate change. In S. Vardoulakis & C. Heaviside (Eds.), Health effects of climate change in the UK 2012. Current evidence, recommendations and research gaps (pp. 83–96). London: Health Protection Agency.

    Google Scholar 

  21. Kennedy, R., & Wakeham, A. J. (2015). Centenary Editorial: Measuring biological particles in the air using the Hirst type spore trap: Aerobiology in the age of genomics. Annals of Applied Biology, 166, 1–3. doi:10.1111/aab.12192.

    Article  Google Scholar 

  22. Lacey, J. (1981). The aerobiology of conidial fungi. In G. T. Cole (Ed.), Biology of conidial fungi (pp. 373–416). New York: Academic Press.

    Chapter  Google Scholar 

  23. Lacey, J. (1996). Spore dispersal—Its role in ecology and disease: the British contribution to fungal aerobiology. Mycological Research, 100(6), 641–660.

    Article  Google Scholar 

  24. Lacey, M. E., & West, J. (2006). The air spora. A manual for catching and identifying airborne biological particles., Dordrecht: Springer.

    Google Scholar 

  25. Marsh, T. J., & Hannaford, J., (2007). The summer 2007 floods in England and Wales—A hydrological appraisal. Wallingford: Centre for Ecology & Hydrology.

    Google Scholar 

  26. Meredith, D. S. (1962). Some components of the air-spora in Jamaican banana plantations. Annals of Applied Biology, 50(3), 577–594.

    Article  Google Scholar 

  27. Meredith, D. S. (1963). Violent spore release in some fungi imperfecti. Annals of Botany, 27(1), 39–47.

    Google Scholar 

  28. Met Office. (2011). Climate: Observations, projections and impacts. http://www.metoffice.gov.uk/media/pdf/t/r/UK.pdf.

  29. Met Office. (2012a). Record breaking heat and sunshineJuly 2006. http://www.metoffice.gov.uk/climate/uk/interesting/july2006.

  30. Met Office (2012b). Heavy rainfall/flooding—June 2007. http://www.metoffice.gov.uk/climate/uk/interesting/june2007.

  31. Met Office. (2013). Warmest, driest and sunniest summer since 2006. http://www.metoffice.gov.uk/news/releases/archive/2013/early-summer-stats.

  32. Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71.

    CAS  Google Scholar 

  33. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.

    Article  Google Scholar 

  34. O’Connor, D. J., Sadyś, M., Skjøth, C. A., Healy, D. A., Kennedy, R., & Sodeau, J. R. (2014). Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia, 30, 397–411.

    Article  Google Scholar 

  35. Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25, 85–98.

    Article  Google Scholar 

  36. Pakpour, S., Li, D.-W., & Klironomos, J. (2015). Relationships of fungal spore concentrations in the air and meteorological factors. Fungal Ecol., 13, 130–134.

    Article  Google Scholar 

  37. Reid, C. E., & Gamble, J. L. (2009). Aeroallergens, allergic disease, and climate change: Impacts and adaptation. EcoHealth, 6, 458–470.

    Article  Google Scholar 

  38. Sadyś, M., Skjøth, C. A., & Kennedy, R. (2014). Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment, 84, 88–99.

    Article  Google Scholar 

  39. Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59, 25–26.

    Article  Google Scholar 

  40. Şakiyan, N., & İnceoğlu, Ö. (2003). Atmospheric concentrations of Cladosporium Link and Alternaria Nées in Ankara and the effects of meteorological factors. Turkish Journal of Botany, 27, 77–81.

    Google Scholar 

  41. Skjøth, C. A., Sommer, J., Frederiksen, L., & Karlson, U. G. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. ACP, 12(22), 11107–11123.

    Google Scholar 

  42. UKCP. (2009). UK climate projections. http://ukclimateprojections.metoffice.gov.uk/.

  43. West, J. S., Townsend, J. A., Stevens, M., & Fitt, B. D. L. (2012). Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. European Journal of Plant Pathology, 133, 315–331.

    Article  Google Scholar 

  44. Wolf, J., O’Neil, N. R., Rogers, C. A., Muilenberg, M. L., & Ziska, L. H. (2010). Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118, 1223–1228.

    CAS  Article  Google Scholar 

  45. Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R, Jr, & Diaz-Soltero, H. (2011). Invasive species and climate change: An agronomic perspective. Climate Change, 105, 13–42.

    Article  Google Scholar 

  46. Ziska, L. H., Epstein, P. B., & Rogers, C. A. (2008). Climate change, aerobiology, and public health in the northeast United States. Mitigation and Adaptation Strategies for Global Change, 13, 607–613.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 780 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadyś, M., Kennedy, R. & West, J.S. Potential impact of climate change on fungal distributions: analysis of 2 years of contrasting weather in the UK. Aerobiologia 32, 127–137 (2016). https://doi.org/10.1007/s10453-015-9402-6

Download citation

Keywords

  • Dry spores
  • Wet spores
  • Fungal ecology
  • Aerobiology
  • Allergy
  • Climate change