Aerobiologia

, Volume 32, Issue 2, pp 289–302

Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand

  • Danielle E. Medek
  • Paul J. Beggs
  • Bircan Erbas
  • Alison K. Jaggard
  • Bradley C. Campbell
  • Don Vicendese
  • Fay H. Johnston
  • Ian Godwin
  • Alfredo R. Huete
  • Brett J. Green
  • Pamela K. Burton
  • David M. J. S. Bowman
  • Rewi M. Newnham
  • Constance H. Katelaris
  • Simon G. Haberle
  • Ed Newbigin
  • Janet M. Davies
Original Paper

Abstract

Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.

Keywords

Aerobiology Latitude Grass pollen Plant distribution Australia New Zealand 

References

  1. American Academy of Allergy, Asthma & Immunology. (2015). Counting stations. http://www.aaaai.org/global/nab-pollen-counts/counting-stations.aspx. Accessed 15 Jul 2015.
  2. Andersson, K., & Lidholm, J. (2003). Characteristics and immunobiology of grass pollen allergens. International Archives of Allergy and Immunology, 130(2), 87–107.CrossRefGoogle Scholar
  3. Australasian Society of Clinical Immunology and Allergy. (2014). Pollen calendarguide to common allergenic pollen. http://www.allergy.org.au/patients/allergic-rhinitis-hay-fever-and-sinusitis/guide-to-common-allergenic-pollen. Accessed 05 Apr 2014.
  4. Bass, D. J., Delpech, V., Beard, J., Bass, P., & Walls, R. S. (2000). Late summer and fall (March–May) pollen allergy and respiratory disease in Northern New South Wales, Australia. Annals of Allergy, Asthma & Immunology, 85(5), 374–381.CrossRefGoogle Scholar
  5. Beggs, P. J., Katelaris, C. H., Medek, D., Johnston, F. H., Burton, P. K., Campbell, B., et al. (2015). Differences in grass pollen allergen exposure across Australia. Australian and New Zealand Journal of Public Health, 39(1), 51–55.CrossRefGoogle Scholar
  6. Bousquet, P.-J., Hooper, R., Kogevinas, M., Jarvis, D., & Burney, P. (2007). Number of allergens to be tested to assess allergenic sensitization in epidemiologic studies: Results of the European Community Respiratory Health Survey I. Clinical and Experimental Allergy, 37(5), 780–787.CrossRefGoogle Scholar
  7. Buters, J. T. M., Weichenmeier, I., Ochs, S., Pusch, G., Kreyling, W., Boere, A. J. F., et al. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65(7), 850–858.CrossRefGoogle Scholar
  8. Collatz, G. J., Berry, J. A., & Clark, J. S. (1998). Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: Present, past, and future. Oecologia, 114(4), 441–454.CrossRefGoogle Scholar
  9. Dass, D. (2010). Influence of weather on prevalence and seasonality of airspora in Canberra. Honours Thesis, The Australian National University.Google Scholar
  10. Davies, J. M. (2014). The contribution of subtropical grass pollen allergens to the global burden of allergic respiratory disease. Clinical and Experimental Allergy, 44(6), 790–801.CrossRefGoogle Scholar
  11. Davies, J. M., Dang, T. D., Voskamp, A., Drew, A. C., Biondo, M., Phung, M., et al. (2011). Functional immunoglobulin E cross-reactivity between Pas n 1 of Bahia grass pollen and other group 1 grass pollen allergens. Clinical and Experimental Allergy, 41(2), 281–291.CrossRefGoogle Scholar
  12. Davies, J. M., Li, H., Green, M., Towers, M., & Upham, J. W. (2012). Subtropical grass pollen allergens are important for allergic respiratory diseases in subtropical regions. Clinical and Translational Allergy, 2(4), 1–10.Google Scholar
  13. de Morton, J., Bye, J., Pezza, A., & Newbigin, E. (2011). On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia. International Journal of Biometeorology, 55(4), 613–622.CrossRefGoogle Scholar
  14. de Weger, L. A., Beerthuizen, T., Gast-Strookman, J. M., van der Plas, D. T., Terreehorst, I., Hiemstra, P. S., & Sont, J. K. (2011). Difference in symptom severity between early and late grass pollen season in patients with seasonal allergic rhinitis. Clinical and Translational Allergy, 1(1), 1–11.CrossRefGoogle Scholar
  15. Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3), 285–299.CrossRefGoogle Scholar
  16. Erbas, B., Akram, M., Dharmage, S. C., Tham, R., Dennekamp, M., Newbigin, E., et al. (2012). The role of seasonal grass pollen on childhood asthma emergency department presentations. Clinical and Experimental Allergy, 42(5), 799–805.CrossRefGoogle Scholar
  17. Erbas, B., Chang, J.-H., Dharmage, S., Ong, E. K., Hyndman, R., Newbigin, E., & Abramson, M. (2007a). Do levels of airborne grass pollen influence asthma hospital admissions? Clinical and Experimental Allergy, 37(11), 1641–1647.CrossRefGoogle Scholar
  18. Erbas, B., Chang, J.-H., Newbigin, E., & Dhamarge, S. (2007b). Modelling atmospheric concentrations of grass pollen using meteorological variables in Melbourne, Australia. International Journal of Environmental Health Research, 17(5), 361–368.CrossRefGoogle Scholar
  19. Ford, S. A., & Baldo, B. A. (1986). A re-examination of ryegrass (Lolium perenne) pollen allergens. International Archives of Allergy and Immunology, 81(3), 193–203.CrossRefGoogle Scholar
  20. Frenguelli, G., Passalacqua, G., Bonini, S., Fiocchi, A., Incorvaia, C., Marcucci, F., et al. (2010). Bridging allergologic and botanical knowledge in seasonal allergy: A role for phenology. Annals of Allergy, Asthma & Immunology, 105(3), 223–227.CrossRefGoogle Scholar
  21. Galán, C., Antunes, C., Brandao, R., Torres, C., Garcia-Mozo, H., Caeiro, E., et al. (2013). Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy, 68(6), 809–812.CrossRefGoogle Scholar
  22. Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34(3), 189–198.CrossRefGoogle Scholar
  23. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395.CrossRefGoogle Scholar
  24. Green, B. J., Dettmann, M. E., Rutherford, S., & Simpson, R. W. (2002). Airborne pollen of Brisbane, Australia: A five-year record, 1994–1999. Grana, 41(4), 242–250.CrossRefGoogle Scholar
  25. Green, B. J., Dettmann, M., Yli-Panula, E., Rutherford, S., & Simpson, R. (2004). Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: A 5-year record, 1994–1999. International Journal of Biometeorology, 48(4), 172–178.CrossRefGoogle Scholar
  26. Haberle, S. G., Bowman, D. M. J. S., Newnham, R. M., Johnston, F. H., Beggs, P. J., Buters, J., et al. (2014). The macroecology of airborne pollen in Australian and New Zealand urban areas. PLoS ONE, 9(5), e97925. doi:10.1371/journal.pone.0097925.CrossRefGoogle Scholar
  27. Hattersley, P. W. (1983). The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia, 57(1–2), 113–128.CrossRefGoogle Scholar
  28. Hill, D. J., Smart, I. J., & Knox, R. B. (1979). Childhood asthma and grass pollen aerobiology in Melbourne. The Medical Journal of Australia, 1(10), 426–429.Google Scholar
  29. IPCC. (2013). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  30. Johansen, N., Weber, R. W., Ipsen, H., Barber, D., Broge, L., & Hejl, C. (2009). Extensive IgE cross-reactivity towards the Pooideae grasses substantiated for a large number of grass-pollen-sensitized subjects. International Archives of Allergy and Immunology, 150(4), 325–334.CrossRefGoogle Scholar
  31. Johnston, F. H., Hanigan, I. C., & Bowman, D. M. J. S. (2009). Pollen loads and allergic rhinitis in Darwin, Australia: A potential health outcome of the grass-fire cycle. EcoHealth, 6(1), 99–108.CrossRefGoogle Scholar
  32. Katelaris, C. H. (2000). Allergic rhinoconjunctivitis—An overview. Acta Ophthalmologica Scandinavica, 78(s230), 66–68.CrossRefGoogle Scholar
  33. Katelaris, C. H., & Burke, T. V. (2003). A 7 year pollen profile of major Olympic Games venues in Sydney, Australia. Aerobiologia, 19(2), 121–124.CrossRefGoogle Scholar
  34. Kosisky, S. E., Marks, M. S., & Nelson, M. R. (2010). Pollen aeroallergens in the Washington, DC, metropolitan area: A 10-year volumetric survey (1998–2007). Annals of Allergy, Asthma & Immunology, 104(3), 223–235.CrossRefGoogle Scholar
  35. McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291–300.CrossRefGoogle Scholar
  36. Murphy, B. P., & Bowman, D. M. J. S. (2007). Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Global Ecology and Biogeography, 16(2), 160–169.CrossRefGoogle Scholar
  37. Newnham, R. M. (1999). Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia, 15(2), 87–94.CrossRefGoogle Scholar
  38. Newnham, R. M., Fountain, D. W., Cornford, C. C., & Forde, M. B. (1995). A national survey of airborne pollen and grass flowering in New Zealand, with implications for respiratory disorder. Aerobiologia, 11(4), 239–252.CrossRefGoogle Scholar
  39. Nony, E., Timbrell, V., Hrabina, M., Boutron, M., Solley, G., Moingeon, P., & Davies, J. M. (2015). Specific IgE recognition of pollen allergens from subtropic grasses in patients from the subtropics. Annals of Allergy, Asthma & Immunology, 114, 214e220.CrossRefGoogle Scholar
  40. Peel, R. G., Kennedy, R., Smith, M., & Hertel, O. (2014). Relative efficiencies of the Burkard 7-day, Rotorod and Burkard Personal samplers for Poaceae and Urticaceae pollen under field conditions. Annals of Agricultural and Environmental Medicine, 21(4), 745–752.CrossRefGoogle Scholar
  41. Schäppi, G. F., Taylor, P. E., Pain, M. C. F., Cameron, P. A., Dent, A. W., Staff, I. A., & Suphioglu, C. (1999). Concentrations of major grass group 5 allergens in pollen grains and atmospheric particles: Implications for hay fever and allergic asthma sufferers sensitized to grass pollen allergens. Clinical and Experimental Allergy, 29(5), 633–641.CrossRefGoogle Scholar
  42. Stevenson, J., Haberle, S. G., Johnston, F. H., & Bowman, D. M. J. S. (2007). Seasonal distribution of pollen in the atmosphere of Darwin, tropical Australia: Preliminary results. Grana, 46(1), 34–42.CrossRefGoogle Scholar
  43. Sturman, A. P., & Tapper, N. J. (2006). The weather and climate of Australia and New Zealand (2nd ed.). Oxford: Oxford University Press.Google Scholar
  44. Tng, D. Y. P., Hopf, F., Haberle, S. G., & Bowman, D. M. J. S. (2010). Seasonal pollen distribution in the atmosphere of Hobart, Tasmania: Preliminary observations and congruence with flowering phenology. Australian Journal of Botany, 58(6), 440–452.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Danielle E. Medek
    • 1
  • Paul J. Beggs
    • 2
  • Bircan Erbas
    • 3
  • Alison K. Jaggard
    • 2
  • Bradley C. Campbell
    • 4
  • Don Vicendese
    • 3
  • Fay H. Johnston
    • 5
  • Ian Godwin
    • 4
  • Alfredo R. Huete
    • 6
  • Brett J. Green
    • 7
  • Pamela K. Burton
    • 8
  • David M. J. S. Bowman
    • 9
  • Rewi M. Newnham
    • 10
  • Constance H. Katelaris
    • 8
  • Simon G. Haberle
    • 11
  • Ed Newbigin
    • 12
  • Janet M. Davies
    • 13
  1. 1.The Canberra HospitalWodenAustralia
  2. 2.Department of Environmental Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyAustralia
  3. 3.School of Psychology and Public HealthLa Trobe UniversityMelbourneAustralia
  4. 4.School of Agriculture and Food ScienceThe University of QueenslandBrisbaneAustralia
  5. 5.Menzies Research Institute TasmaniaUniversity of TasmaniaHobartAustralia
  6. 6.Plant Functional Biology and Climate ChangeUniversity of Technology, SydneySydneyAustralia
  7. 7.National Institute for Occupational Safety and HealthCenters for Disease Control and PreventionMorgantownUSA
  8. 8.Campbelltown Hospital and the School of MedicineUniversity of Western SydneyMacarthurAustralia
  9. 9.School of Biological SciencesUniversity of TasmaniaHobartAustralia
  10. 10.School of Geography, Environment and Earth SciencesVictoria University of WellingtonWellingtonNew Zealand
  11. 11.Department of Archaeology and Natural History, College of Asia and the PacificThe Australian National UniversityCanberraAustralia
  12. 12.School of BioSciencesThe University of MelbourneMelbourneAustralia
  13. 13.School of Medicine, Translational Research InstituteThe University of QueenslandBrisbaneAustralia

Personalised recommendations