Aerobiologia

, Volume 32, Issue 2, pp 199–209 | Cite as

Intradiurnal patterns of allergenic airborne pollen near a city motorway in Berlin, Germany

  • Anke Simoleit
  • Ulrich Gauger
  • Hans-Guido Mücke
  • Matthias Werchan
  • Barbora Obstová
  • Torsten Zuberbier
  • Karl-Christian Bergmann
Original Paper

Abstract

In this study, the seasonally averaged intradiurnal patterns of four different pollen types (Fraxinus, Betula, Poaceae and Artemisia) and the role of traffic volume, air pollution and selected weather parameters were investigated. Measurements were carried out with a 7-day recording volumetric spore trap (Hirst type) near a congested city motorway (the A 100) in Berlin, Germany, in 2012, 2013 and partly 2011. Both Poaceae and Artemisia pollen showed distinct patterns which were similar across the years. The main period of grass pollen concentrations in the air was from 8 a.m. to 10 p.m. with peaks about midday or in the afternoon. Mugwort pollen mainly occurred between 6 a.m. and 2 p.m. with a clear maximum from 8 to 10 a.m. With regard to Fraxinus and Betula pollen, the patterns were not as clear and showed differences throughout the years. The intradiurnal patterns of traffic volume and pollen load, mainly of Poaceae in the afternoon and Artemisia in the morning, were partly coincident. The combination of both a high pollen count and air pollution, due to exhaust emissions, represents a special health threat which could result in a double burden for allergy sufferers. In the case of the daily means of Betula and Poaceae, relative humidity had a significantly negative effect on pollen concentrations on the same and/or next day/s, sunshine duration (Poaceae) and air temperature (Artemisia) a positive one.

Keywords

Pollen Intradiurnal patterns Large city City motorway Traffic volume Air pollution 

References

  1. Behrendt, H., Becker, W.M., Friedrichs, K. H., et al. (1992). Interaction between aeroallergens and airborne particulate matter. International Archives of Allergy and Immunology, 99, 425–428.CrossRefGoogle Scholar
  2. Behrendt, H., Becker, W.M., Fritzsche, C., et al. (1997). Air pollution and allergy: Experimental studies on modulation of allergen release from pollen by air pollutants. International Archives of Allergy and Immunology, 113, 69–74.CrossRefGoogle Scholar
  3. Bergmann, K.-C., & Jäger, S. (2010). Pollenflug über Europa - Indikator des Klimawandels? Rundgespräche der Kommission für Ökologie, Bd. 38 “Bioaerosole und ihre Bedeutung für die Gesundheit”, 43–53.Google Scholar
  4. Bergmann, K.-C., Simoleit, A., Wagener, S., Mücke, H.-G., Werchan, M., & Zuberbier, T. (2013). The distribution of pollen and particulate matter in an urban agglomeration using the city of Berlin as an example. Allergo Journal. doi:10.1007/s15007-013-0430-7.Google Scholar
  5. Bergmann, K.-C., Zuberbier, T., Augustin, J., et al. (2012). Klimawandel und Pollenallergie: Städte und Kommunen sollten bei der Bepflanzung des öffentlichen Raums Rücksicht auf Pollenallergiker nehmen. Allergo Journal, 21, 103–108.CrossRefGoogle Scholar
  6. Blomme, K., Tomassen, P., Lapeere, H., Huvenne, W., Bonny, M., Acke, F., et al. (2013). Prevalence of allergic sensitization versus allergic rhinitis symptoms in an unselected population. International Archives of Allergy and Immunology, 160, 200–207.CrossRefGoogle Scholar
  7. Cakmak, S., Dales, R. E., & Coates, F. (2012). Does air pollution increase the effect of aeroallergens on hospitalization for asthma? Journal of Allergy and Clinical Immunology, 129(1), 228–231.CrossRefGoogle Scholar
  8. Dales, R. E., Cakmak, S., Judek, S., & Coates, F. (2008). Tree pollen and hospitalization for asthma in urban Canada. International Archives of Allergy and Immunology, 146(3), 241–247.CrossRefGoogle Scholar
  9. D’Amato, G., Bergmann, K.-C., Cecchi, L., Annesi-Maesano, I., Sanduzzi, A., Liccardi, G., et al. (2014). Climate change and air pollution—Effects on pollen allergy and other allergic respiratory diseases. Allergo Journal International, 23, 17–23.CrossRefGoogle Scholar
  10. D’Amato, G., Cecchi, L., D’Amato, M., & Liccardi, G. (2010). Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update. Journal of Investigational Allergology and Clinical Immunology, 20(2), 95–102.Google Scholar
  11. Galán, C., Smith, M., Thibaudon, M., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.CrossRefGoogle Scholar
  12. Hecht, R. (1994). 3. Europäisches Pollenflug-Symposium - Bad Lippspringe - Vorträge und Berichte. In K.-C. Bergmann, Stiftung Deutscher Polleninformationsdienst (Eds.), Pollenbestimmungstechnik, Ergebniswertung und die Herausgabe von Pollenfluginformationen (pp. 21–32). Düsseldorf: Vereinigte Verlagsanstalten GmbH.Google Scholar
  13. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  14. Jäger, S. (1990). Tageszeitliche Verteilung und langjährige Trends bei allergiekompetenten Pollen. Allergologie, 13(5), 159–182.Google Scholar
  15. Jäger, S., Mandrioli, P., Spieksma, F., et al. (1995). News. Aerobiologia, 11, 69–70.CrossRefGoogle Scholar
  16. Jariwala, S. P., Kurada, S., Moday, H., et al. (2011). Association between tree pollen counts and asthma ED visits in a high-density urban center. Journal of Asthma, 48(5), 442–448.CrossRefGoogle Scholar
  17. Käpylä, M. (1981). Diurnal variation of non-arboreal pollen in the air in Finland. Grana, 20, 55–59.CrossRefGoogle Scholar
  18. Käpylä, M. (1984). Diurnal variation of tree pollen in the air in Finland. Grana, 23, 167–176.CrossRefGoogle Scholar
  19. Langen, U., Schmitz, R., & Steppuhn, H. (2013). Häufigkeit allergischer Erkrankungen in Deutschland - Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt. doi:10.1007/s00103-012-1652-7.Google Scholar
  20. Mazzarella, G., Esposito, V., Bianco, A., et al. (2012). Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens. Environmental Pollution, 161, 64–69.CrossRefGoogle Scholar
  21. Morgenstern, V., Zutavern, A., Cyrys, J., et al. (2008). GINI Study Group, LISA Study Group. Atopic diseases, allergic sensitization and exposure to traffic-related air pollution in children. American Journal of Respiratory and Critical Care Medicine, 177, 1331–1337.CrossRefGoogle Scholar
  22. Namork, E., Johansen, B. V., & Løvik, M. (2006). Detection of allergens adsorbed to ambient air particles collected in four European cities. Toxicology Letters, 165(1), 71–78.CrossRefGoogle Scholar
  23. Nilsson, S., & Persson, St. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.CrossRefGoogle Scholar
  24. Norris-Hill, J. (1999). The diurnal variation of Poaceae pollen concentrations in a rural area. Grana, 38, 301–305.CrossRefGoogle Scholar
  25. Thompson, J. L., & Thompson, J. E. (2003). The urban jungle and allergy. Immunology and Allergy Clinics of North America, 23(3), 371–387.CrossRefGoogle Scholar
  26. VMZ (Traffic Management Centre) Berlin Betreibergesellschaft mbH, Ullsteinstr. 114, Turm C, 12109 Berlin, Germany.Google Scholar
  27. von Wahl, P.-G., Gebhart, S., & Chlebarov, S. (1989). Tageszeitliche Veränderungen des Birken- und Gräserpollengehaltes der Luft auf der ostfriesischen Insel Borkum. Allergologie, 12(6), 249–257.Google Scholar
  28. Ziello, C., Sparks, T. H., Estrella, N., et al. (2012). Changes to airborne pollen counts across Europe. PLoS One, 7(4), e34076.CrossRefGoogle Scholar
  29. Ziska, L. H., Gebhard, D. E., Frenz, D. A., et al. (2003). Cities as harbingers of climate change: Common ragweed, urbanization and public health. Journal of Allergy and Clinical Immunology, 111(2), 290–295.CrossRefGoogle Scholar
  30. Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V., & Church, M. K. (2014). Economic burden of inadequate management of allergic diseases in the European Union: A GA2LEN review. Allergy, 69, 1275–1279.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Anke Simoleit
    • 1
  • Ulrich Gauger
    • 2
  • Hans-Guido Mücke
    • 3
  • Matthias Werchan
    • 4
  • Barbora Obstová
    • 4
    • 5
  • Torsten Zuberbier
    • 6
  • Karl-Christian Bergmann
    • 4
  1. 1.LemwerderGermany
  2. 2.BerlinGermany
  3. 3.Federal Environment Agency (UBA)BerlinGermany
  4. 4.Foundation German Pollen Information Service (PID)BerlinGermany
  5. 5.Institute of Botany of the Czech Academy of SciencesPruhoniceCzech Republic
  6. 6.Allergy-Centre-CharitéCharité - Universitätsmedizin BerlinBerlinGermany

Personalised recommendations