Skip to main content

A 1-month online monitoring campaign of ambient fungal spore concentrations in the harbour region of Cork, Ireland

Abstract

The airborne monitoring of bioaerosols has become a research area attracting significant scientific interest over the last few years because of potential impacts on human health. For example, so-called primary aerosol biological particles (PBAPs) such as pollen and fungal spores are known to induce allergic responses and therefore exacerbate reactions such as allergenic rhinitis (hay fever) and chronic obstructive pulmonary disease. Although impaction/optical microscopy has been used for many years to quantify airborne PBAPs, the use of fluorescence as an underpinning method to enable the development of online (“real-time”) instruments, such as the Waveband Integrated Bioaerosol Sensor (WIBS), is recent. In the current study, the conventional method of PBAPs sampling (automatic Hirst-type volumetric trap) was co-located with a WIBS-4 instrument at a campaign site in Cork, Ireland, close to its Harbour, for much of the month of July in 2010. The extensive data set thereby obtained represents important results to test the ability of the WIBS-4 approach to detect and quantify biological particles in the coarse to super-coarse size range (3–30 µm) at a location with semi-rural, semi-urban and coastal influences. Quantitative and qualitative comparisons were made between the different approaches. It is clear from the results obtained in this short field campaign performed in a relatively complex ambient air environment that the WIBS-4 instrument in low gain can provide very similar concentration patterns to those obtained by more traditional instrumentation used for the evaluation of fungal spore concentration levels. WIBS does, however, appear to overestimate particle concentrations in comparison with data obtained using the SporeWatch/optical microscopy approach. Interestingly, certain time periods in the campaign gave rise to contrasting fluorescence averages that correlated with the concentrations of certain fungal spore types monitored by the traditional impaction/optical microscopy approach. This phenomenon may be due to the differing biofluorophores available to differing spore types. The collection of real-time, early-warning signals of periods in which high releases of spores are occurring could prove to be beneficial in the construction of allergenic health warnings for the general public. This study should be considered as a proof of principle about the possibility of using light-induced fluorescence methods for fungal spore detection in ambient air.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Agranovski, V., & Ristovski, Z. D. (2005). Real-time monitoring of viable bioaerosols: Capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. Journal of Aerosol Science, 36, 665–676.

    Article  CAS  Google Scholar 

  • Agranovski, V., Ristovski, Z. D., Ayoko, G. A., & Morawska, L. (2004). Performance evaluation of the UVAPS in measuring biological aerosols: Fluorescence spectra from NAD (P) H coenzymes and riboflavin. Aerosol Science and Technology, 38, 354–364.

    Article  CAS  Google Scholar 

  • Agranovski, V., Ristovski, Z., Hargreaves, M., J Blackall, P., & Morawska, L. (2003). Performance evaluation of the UVAPS: Influence of physiological age of airborne bacteria and bacterial stress. Journal of Aerosol Science, 34, 1711–1727.

    Article  CAS  Google Scholar 

  • Bailey, K. L., Meza, J. L., Smith, L. M., von Essen, S. G., & Romberger, D. J. (2008). Agricultural exposures in patients with COPD in health systems serving rural areas. Journal of Agromedicine, 12, 71–76.

    Article  Google Scholar 

  • Bieleski, R. (1982). Sugar alcohols. Encyclopedia of Plant Physiology, 13, 158–170.

    Google Scholar 

  • Brown, D. W., & Salvo, J. J. (1994). Isolation and characterization of sexual spore pigments from Aspergillus nidulans. Applied and Environmental Microbiology, 60, 979–983.

    CAS  Google Scholar 

  • Burshtein, N., Lang-Yona, N., & Rudich, Y. (2011). Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean. Atmospheric Chemistry and Physics, 11, 829–839.

    Article  CAS  Google Scholar 

  • Caruana, D. J. (2011). Detection and analysis of airborne particles of biological origin: Present and future. Analyst, 136, 4641–4652.

    Article  CAS  Google Scholar 

  • Corden, J. M., & Millington, W. M. (1994). Didymella ascospores in derby. Grana, 33, 104–107.

    Article  Google Scholar 

  • Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O. & Pöschl, U. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B, 64. doi:10.3402/tellusb.v64i0.15598.

  • Frenz, D. A. (2000). The effect of windspeed on pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 85, 392–394.

    Article  CAS  Google Scholar 

  • Gabey, A., Gallagher, M., Whitehead, J., Dorsey, J., Kaye, P., & Stanley, W. (2010). Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmospheric Chemistry and Physics, 10, 4453–4466.

    Article  CAS  Google Scholar 

  • Gabey, A., Stanley, W., Gallagher, M., & Kaye, P. H. (2011). The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations. Atmospheric Chemistry and Physics, 11, 5491–5504.

    Article  CAS  Google Scholar 

  • Gabey, A., Vaitilingom, M., Freney, E., Boulon, J., Sellegri, K., Gallagher, M., et al. (2013). Observations of fluorescent and biological aerosol at a high-altitude site in central France. Atmospheric Chemistry and Physics, 13, 7415–7428.

    Article  Google Scholar 

  • Graber, E. R., & Rudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics, 6, 729-–753.

  • Hairston, P. P., Ho, J., & Quant, F. R. (1997). Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. Journal of Aerosol Science, 28, 471–482.

    Article  CAS  Google Scholar 

  • Hallar, A., Chirokova, G., McCubbin, I., Painter, T. H., Wiedinmyer, C., & Dodson, C. (2011). Atmospheric bioaerosols transported via dust storms in the western United States. Geophysical Research Letters, 38, L17801.

    Article  Google Scholar 

  • Healy, D. A., Connor, D. J., Burke, A. M. & Sodeau, J. R. (2012a). A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material. Atmospheric Environment, 60, 534–543.

  • Healy, D. A., O’Connor, D. J., & Sodeau, J. R. (2012b). Measurement of the particle counting efficiency of the “Waveband Integrated Bioaerosol Sensor” model number 4 (WIBS-4). Journal of Aerosol Science, 47, 94–99.

    Article  CAS  Google Scholar 

  • Healy, D., Huffman, J., O’Connor, D., Pöhlker, C., Pöschl, U., & Sodeau, J. (2014). Ambient measurements of biological aerosol particles near Killarney, Ireland: A comparison between real-time fluorescence and microscopy techniques. Atmospheric Chemistry and Physics Discussions, 14, 3875–3915.

    Article  Google Scholar 

  • Hill, S. C., Pan, Y.-L., Williamson, C., Santarpia, J. L., & Hill, H. H. (2013). Fluorescence of bioaerosols: Mathematical model including primary fluorescing and absorbing molecules in bacteria. Optics Express, 21, 22285–22313.

    Article  Google Scholar 

  • Huffman, J., Sinha, B., Garland, R., Snee-Pollmann, A., Gunthe, S., Artaxo, P., et al. (2012). Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmospheric Chemistry and Physics, 12, 11997–12019.

    Article  CAS  Google Scholar 

  • Huffman, J., Treutlein, B., & Pöschl, U. (2010). Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmospheric Chemistry and Physics, 10, 3215–3233.

    Article  CAS  Google Scholar 

  • Ion, A., Vermeylen, R., Kourtchev, I., Cafmeyer, J., Chi, X., Gelencsér, A., et al. (2005). Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: Sources and diel variations. Atmospheric Chemistry and Physics, 5, 1805–1814.

    Article  CAS  Google Scholar 

  • Kanaani, H., Hargreaves, M., Ristovski, Z., & Morawska, L. (2007). Performance assessment of UVAPS: Influence of fungal spore age and air exposure. Journal of Aerosol Science, 38, 83–96.

    Article  CAS  Google Scholar 

  • Kanaani, H., Hargreaves, M., Smith, J., Ristovski, Z., Agranovski, V., & Morawska, L. (2008). Performance of UVAPS with respect to detection of airborne fungi. Journal of Aerosol Science, 39, 175–189.

    Article  CAS  Google Scholar 

  • Kay, A. B. (2008). Allergy and allergic diseases. Volume 1, The scientific basis of allergy [Online]. Malden, MA: Blackwell. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=267056.

  • Kayatz, P., Thumann, G., Luther, T. T., Jordan, J. F., Bartz-Schmidt, K. U., & Schraermeyer, U. (2001). Oxidation causes melanin fluorescence. Investigative Opthamology & Visual Science, 42, 241–246.

  • Kaye, P. H., Aptowicz, K., Chang, R. K., Foot, V., & Videen, G. (2007). Angularly resolved elastic scattering from airborne particles. Optics of Biological Particles II. Mathematics, Physics and Chemistry, 238, 31–61.

    Article  Google Scholar 

  • Kaye, P. H., Hirst, E., Foot, V. E., Clark, J. M. & Baxter, K. (2004). A low-cost multi-channel aerosol fluorescence sensor for networked deployment. In J. C. Carrano & A. Zukauskas (Eds.), Optically based biological and chemical sensing for defence (pp. 292–299).

  • Kaye, P., Stanley, W., Hirst, E., Foot, E., Baxter, K., & Barrington, S. (2005). Single particle multichannel bio-aerosol fluorescence sensor. Optics Express, 13, 3583–3593.

    Article  CAS  Google Scholar 

  • Khattab, A., & Levetin, E. (2008). Preliminary studies on the effect of the Burkard alternate orifice on airborne fungal spore concentrations. Aerobiologia, 24, 165–171.

    Article  Google Scholar 

  • Kirkhorn, S. R., & Garry, V. F. (2000). Agricultural lung diseases. Environmental Health Perspectives, 108, 705.

    Article  Google Scholar 

  • Lacey, M. & West, J. S. (2006). The air spora a manual for catching and identifying airborne biological particles [Online]. Dordrecht: Springer. http://site.ebrary.com/id/10159305.

  • Li, D.-W. (2005). Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence. Mycological Research, 109, 1235–1242.

    Article  Google Scholar 

  • Mandrioli, P., Caneva, G., & Sabbioni, C. (2003). Cultural heritage and aerobiology: Methods and measurement techniques for biodeterioration monitoring. New York: Kluwer.

    Book  Google Scholar 

  • Matthias-Maser, S., & Jaenicke, R. (1994). Examination of atmospheric bioaerosol particles with radii > 0.2 μm. Journal of Aerosol Science, 25, 1605–1613.

    Article  CAS  Google Scholar 

  • Morales, J., González-Minero, F., Carrasco, M., Ogalla, V., & Candau, P. (2006). Airborne basidiospores in the atmosphere of Seville (South Spain). Aerobiologia, 22, 125–132.

    Article  Google Scholar 

  • Morris, C., Georgakopoulos, D. & Sands, D. (2004). Ice nucleation active bacteria and their potential role in precipitation. Journal De Physique IV, 121, 87–103.

  • Nighswander-Rempel, S. P., Riesz, J., Gilmore, J., Bothma, J. P., & Meredith, P. (2005). Quantitative fluorescence excitation spectra of synthetic eumelanin. The Journal of Physical Chemistry B, 109, 20629–20635.

    Article  CAS  Google Scholar 

  • O’Connor, D. J., Iacopino, D., Healy, D. A., O’sullivan, D., & Sodeau, J. R. (2011). The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmospheric Environment, 45, 6451–6458.

    Article  Google Scholar 

  • O’Connor, D. J., Healy, D. A., & Sodeau, J. R. (2013). The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique. Atmospheric Environment, 80, 415–425.

    Article  Google Scholar 

  • O’Connor, D. J., Healy, D. A., Hellebust, S., Buters, J. T. & Sodeau, J. R. (2014). Using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique for the on-line detection of pollen grains. Aerosol Science and Technology, 48, 341–349.

  • O’Connor, D. J., Lovera, P., Iacopino, D., O’Riordan, A., Healy, D. A. & Sodeau, J. R. (2014a). Using spectral analysis and fluorescence lifetimes to discriminate between grass and tree pollen for aerobiological applications. Analytical Methods, 6, 1633–1639.

  • O’Connor, D. J., Sadyś, M., Skjøth, C. A., Healy, D. A., Kennedy, R. & Sodeau, J. R. (2014b). Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia, 30, 397–411.

  • O'Gorman, M., & Fuller, H. T. (2008). Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospheric Environment, 42, 4355–4368.

  • Pan, Y. L., Hartings, J., Pinnick, R. G., Hill, S. C., Halverson, J., & Chang, R. K. (2003). Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Science and Technology, 37, 628–639.

    Article  CAS  Google Scholar 

  • Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80, 674–678.

    Article  Google Scholar 

  • Pentecost, A. (1981). Some observations on the size and shape of lichen ascospores in relation to ecology and taxonomy. New Phytologist, 89, 667–678.

    Article  Google Scholar 

  • Pöhlker, C., Huffman, J., & Pöschl, U. (2012). Autofluorescence of atmospheric bioaerosols–fluorescent biomolecules and potential interferences. Atmospheric Measurement Techniques, 5, 37–71.

    Article  Google Scholar 

  • Raimondi, V., Agati, G., Cecchi, G., Gomoiu, I., Lognoli, D., & Palombi, L. (2009). In vivo real-time recording of UV-induced changes in the autofluorescence of a melanin-containing fungus using a micro-spectrofluorimeter and a low-cost webcam. Optics Express, 17, 22735–22746.

    Article  CAS  Google Scholar 

  • Raimondi, V., Palombi, L., Cecchi, G., Lognoli, D., Trambusti, M., & Gomoiu, I. (2007). Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques. Optics Communications, 273, 219–225.

    Article  CAS  Google Scholar 

  • Reponen, T., Grinshpun, S. A., Conwell, K. L., Wiest, J., & Anderson, M. (2001). Aerodynamic versus physical size of spores: Measurement and implication for respiratory deposition. Grana, 40, 119–125.

    Article  Google Scholar 

  • Roshchina, V. V. (2003). Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. Journal of Fluorescence, 13, 403–420.

    Article  CAS  Google Scholar 

  • Roshchina, V. V. (2008). Fluorescing world of plant secreting cells. Enfield: Science Publishers.

    Google Scholar 

  • Roshchina, V. V. (2012). Vital autofluorescence: Application to the study of plant living cells. International Journal of Spectroscopy.

  • Roshchina, V. V., Melnikova, E. V., Mit’Kovskaya, L. V., & Kharnaukhov, V. N. (1998). Microspectrofluorimetry for the study of intact plant secreting cells. Zhurnal Obshchei Biologii, 59, 531–554.

    Google Scholar 

  • Roshchina, V. V., Yashin, V. A., & Kononov, A. V. (2004). Autofluorescence of developing plant vegetative microspores studied by confocal microscopy and microspectrofluorimetry. Journal of Fluorescence, 14, 745–750.

    Article  CAS  Google Scholar 

  • Sivaprakasam, V., Huston, A., Scotto, C., & Eversole, J. (2004). Multiple UV wavelength excitation and fluorescence of bioaerosols. Optics Express, 12, 4457–4466.

    Article  CAS  Google Scholar 

  • Sivaprakasam, V., Lin, H.-B., Huston, A. L., & Eversole, J. D. (2011). Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Optics Express, 19, 6191–6208.

    Article  CAS  Google Scholar 

  • Speight, S. E., Hallis, B. A., Bennett, A. M., & Benbough, J. E. (1997). Enzyme-linked immunosorbent assay for the detection of airborne microorganisms used in biotechnology. Journal of Aerosol Science, 28, 483–492.

    Article  CAS  Google Scholar 

  • Stanley, W. R., Kaye, P. H., Foot, V. E., Barrington, S. J., Gallagher, M., & Gabey, A. (2011). Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle spectrometer. Atmospheric Science Letters, 12, 195–199.

    Article  Google Scholar 

  • Toprak, E., & Schnaiter, M. (2012). Fluorescent biological aerosol particles (FBAPs) measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: Laboratory tests combined with a one year field study. Atmospheric Chemistry and Physics Discussions, 12, 17607–17656.

    Article  Google Scholar 

  • Toprak, E., & Schnaiter, M. (2013). Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor, WIBS-4: Laboratory tests combined with a one-year field study. Atmospheric Chemistry and Physics Discussions, 13, 225–243.

  • Wu, C. H. & Warren, H. (1984a). Natural autofluorescence in fungi, and its correlation with viability. Mycologia, 76, 1049–1058.

  • Wu, C., & Warren, H. (1984b). Induced autofluorescence in fungi and its correlation with viability: Potential application of fluorescence microscopy. Phytopathology (USA), 74, 1353–1358.

    Article  Google Scholar 

  • Zellner, R. (1999). Global aspects of atmospheric chemistry. Berlin: Springer.

    Google Scholar 

  • Zipfel, W. R., Williams, R. M., Christie, R., Nikitin, A. Y., Hyman, B. T., & Webb, W. W. (2003). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences, 100, 7075–7080.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Irish EPA for financial support with two separate Grants: 2007 CCRP Project 4.4.6.b. (BioCheA) and a Doctoral Scholarship to DJOC. We would also like to thank Professor Paul Kaye and Dr Warren Stanley for their help and advice in supporting all matters WIBS. Finally, thanks go to Evelyn and Barry Healy for providing the secure Cork monitoring site.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David J. O’Connor or John R. Sodeau.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Connor, D.J., Healy, D.A. & Sodeau, J.R. A 1-month online monitoring campaign of ambient fungal spore concentrations in the harbour region of Cork, Ireland. Aerobiologia 31, 295–314 (2015). https://doi.org/10.1007/s10453-015-9365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-015-9365-7

Keywords

  • Aerobiology
  • Fungal spores
  • Real-time air monitoring
  • Fluorescence