, Volume 31, Issue 1, pp 89–97 | Cite as

Airborne algae: overview of the current status and its implications on the environment

  • Nivedita SahuEmail author
  • Anjana Devi Tangutur
Review Paper


A diverse variety of microorganisms comprising bacteria, fungi, viruses, protozoa and algae are found in the atmosphere. They have various implications in the environment and on the health aspects in living organisms. The spatial distribution and their prevalence is affected by climatic changes and other natural processes including human activities. Although bacteria, fungi, viruses, protozoa and algae have been well studied, research in the area of airborne algae appears to be limited indicating that airborne algae are the least studied organisms in both aerobiological and phycological research. The main focus in the studies carried out so far include an analysis of diversity of airborne algae in different climatic conditions, at a particular locality or in different geographical regions. Few available studies review the allergenicity of the airborne algae to humans and/or its possible role in the ecosystem(s). Therefore, in this paper, we provide a comprehensive review of research carried out so far on airborne algae and suggest future research directions for fulfilling the existing gaps based on our understanding of the literature in this area of phycological research.


Microorganisms Airborne/air-dispersed algae Environment Health Global warming 



The authors duly acknowledge the CSIR-IICT, Hyderabad, India for their support to carry out the study.


  1. Annadotter, H., Cronberg, G., Nystrand, R., & Rylander, R. (2005). Endotoxins from cyanobacteria and gram-negative bacteria as the cause of an acute influenza-like reaction after inhalation of aerosols. EcoHealth, 2, 209–221.CrossRefGoogle Scholar
  2. Annesi-Maesano, I., Forastiere, F., Kunzli, N., Brunekref, B., & on behalf of the Environment and Health Committee of the European Respiratory Society. (2007). Particulate matter, science and EU policy. European Respiratory Journal, 29, 428–431.CrossRefGoogle Scholar
  3. Balakrishnan, M. S., & Gunale, V. R. (1980). Cyanophycean air pollutants: A possible cause of inhalant allergy. Indian Journal of Air Pollution Control, 3, 9–17.Google Scholar
  4. Benninghoff, W. S. (1991). Aerobiology and its significance to biogeography and ecology. Grana, 30, 9–15.Google Scholar
  5. Bernstein, I. L., & Safferman, R. S. (1965). Sensitivity of skin and bronchial mucosa to green algae, I. Allergy, 38, 166–172.CrossRefGoogle Scholar
  6. Bernstein, I. L., & Safferman, R. S. (1966). Sensitivity of skin and bronchial mucosa to green algae. Journal of Allergy, 38(3), 166–173.CrossRefGoogle Scholar
  7. Broady, P. A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 5, 1307–1335.CrossRefGoogle Scholar
  8. Brown, R. M., Jr, Larson, D. H., & Bold, H. C. (1964). Airborne algae: their abundance and heterogeneity. Science, 143, 583–585.CrossRefGoogle Scholar
  9. Brown, R. M. Jr.(1971). Studies of Hawaiian fresh-water and soil algae: I. The atmospheric dispersal of airborne algae and fern spores across the island of Oahu, Hawaii. In Parker BC, Brown RM Jr (Eds.), Contributions in Phycology (pp. 175–188). Kansas: Allen Press.Google Scholar
  10. Caller, T. A., Doolin, J. W., Haney, J. F., Murby, A. J., West, K. G., Farrar, H. E., et al. (2009). A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms. Amyotrophic Lateral Sclerosis, 10(S2), 101–108.Google Scholar
  11. Carson, J. L., & Brown, R. M., Jr. (1976). The correlation of soil algae, airborne algae and fern spores with meteorological conditions on the island of Hawaii. Pacific Science, 30(2), 197–205.Google Scholar
  12. Comtois, P., & Isard, S. (1999). Aerobiology: coming of age in a new millennium. Aerobiologia, 15, 259–266.CrossRefGoogle Scholar
  13. Ehrenberg, G. G. (1844). Bericht üeber die zur bekanntmachung geeigneten verhandunger der konigl preuss. Akad Wiss Berlin, 9, 194–207.Google Scholar
  14. Ehresmann, D. W., & Hatch, M. T. (1975). Effect of relative humidity on the survival of airborne unicellular algae. Applied Microbiology, 29, 352–359.Google Scholar
  15. Ettl, H., & Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen (p. 721). Jena: Gustav Fischer.Google Scholar
  16. Freystein, K., Salisch, M., & Reisser, W. (2008). Algal biofilms on tree bark to monitor airborne pollutants. Biologia, 63, 866–872.
  17. Geissler, U., & Geroff, J. (1965). Das VorKommeh Von Diatomeen in menschlichen Organen und in der Luft. Nova Hedwigia, 10, 565–577.Google Scholar
  18. Genitsaris, S., Kormas, K. A., & Moustaka-Gouni, M. (2011). Airborne algae and cyanobacteria: Occurrence and related health effect. Frontiers in Bioscience, 3, 772–787.CrossRefGoogle Scholar
  19. Gregory, P. H., Hamilton, E. D., & Sreeramulu, T. (1955). Occurrence of alga Gloeocapsa in the air. Nature, 176, 1270.CrossRefGoogle Scholar
  20. Kristiansen, J. (1996). Dispersal of freshwater algae: A review. Hydrobiologia, 336, 151–157.CrossRefGoogle Scholar
  21. Lunceford, T. M. (1968). Algae as an allergen—provocative nasal inhalation. The Journal of the Kansas Medical Society, 69, 466–467.Google Scholar
  22. Marshall, W. A. (1996). Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytologist, 134, 523–530.CrossRefGoogle Scholar
  23. Marshall, W. A., & Chalmers, M. O. (1997). Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography, 20, 585–594.CrossRefGoogle Scholar
  24. Maynard, N. G. (1968). Significance of airborne algae. Zeitschrift für allgemeine Mikrobiologie, Journal of Basic Microbiology, 8(3), 225–226.CrossRefGoogle Scholar
  25. McElhenney, T. R., Bold, H. C., Brown, R. M., Jr, & McGovern, J. P. (1962). Algae: A cause of inhalant allergy in children. Annals of Allergy, 20, 739–743.Google Scholar
  26. McGovern, J. P., McElhenney, T. R., & Brown, R. M., Jr. (1965). Airborne algae and their allergenicity. I. Air sampling and delineation of the problem. Annals of Allergy, 23, 47–50.Google Scholar
  27. Meier, F. C., & Lindbergh, C. A. (1935). Collecting microorganisms from the Arctic atmosphere. The Scientific Monthly, 40(1), 5–20.Google Scholar
  28. Mittal, A., Agarwal, M. K., & Shivpuri, D. N. (1979a). Studies on allergenic algae of Delhi area: Botanical aspects. Annals of Allergy, 42(4), 248–252.Google Scholar
  29. Mittal, A., Agarwal, M. K., & Shivpuri, D. N. (1979b). Respiratory allergy to algae: Clinical aspects. Annals of Allergy, 42(4), 253–256.Google Scholar
  30. Molish, H. (1920). Populare biologischevortrag XIII Biol (p. 280). Germany: Atmospharischen.Google Scholar
  31. Pedrós-Alió, C. (2006). Marine microbial diversity: Can it be determined? Trends in Microbiology, 14, 257–263.Google Scholar
  32. Rayburn, W. R., Mack, R. N., & Metting, B. (1982). Conspicuous algal colonization of the ash from Mount St Helens. Journal of Phycology, 18, 537–543.CrossRefGoogle Scholar
  33. Rosas, I., Roy-Ocotla, G., & Mosiño, P. (1989). Meteorological effects on variation of airborne algae in Mexico. International Journal of Biometeorology, 33(3), 173–179.CrossRefGoogle Scholar
  34. Rosas, I., Roy-Ocotla, G., Mosiño, P., Baez, A., & Rivera, L. (1987). Abundance and heterogeneity of algae in the Mexico City atmosphere. Geofisica Internacional, 26, 359–373.Google Scholar
  35. Roy-Ocotla, G., & Canera, J. (1993). Aeroalgae: Responses to some aerobiological questions. Grana, 32(1), 48–56. (ISSN 0017-3134).CrossRefGoogle Scholar
  36. Salisbury, S. H. (1866). On the cause of intermittent and remittent fevers, with investigations, which tend to prove that these affections are caused by certain species of palmellae. American Journal of Medical Science, 51, 51–75.Google Scholar
  37. Schellmann, B., & Sperl, W. (1979). Detection of diatoms in bone marrow (femur) of nondrowned. Zeitschrift für Rechtsmedizin. Journal of Legal Medicine, 83, 319–324. [in German].Google Scholar
  38. Schlichting, H. E., Jr. (1961). Viable species of algae and protozoa in the atmosphere. Lloydia, 24, 81–88.Google Scholar
  39. Schlichting, H. E., Jr. (1969). The importance of airborne algae and protozoa. Journal of Air Pollution Control Association, 19(12), 946–951.CrossRefGoogle Scholar
  40. Schlichting, H. E., Jr. (1970). Airborne Algae and Protozoa. Carolina Tips, 33(9), 33–34.Google Scholar
  41. Schlichting, H. E. Jr., Raynor, G. S., & Solomon, W. R. (1971). Recommendations for aerobiology sampling in a coherent monitoring system. In W. S. Benninghoff & R. L. Edmonds (Eds.), Algae and protozoa in the atmosphere (pp. 60–61). US/IBP Aerobiology Handbook III. Michigan: University of Michigan.Google Scholar
  42. Schlichting, H. E. Jr., Brown, R. M. Jr., & Smith, P. E. (1972). Airborne algae of hawaii: A model for coordinated aero-biological research. In W. S. Benninghoff & R. L. Edmonds (Eds.), U.S./IBP Aerobiology Handbook III (pp. 63–64). Ann Arbor: University of Michigan.Google Scholar
  43. Sharma, N. K., Rai, A. K., & Singh, S. (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29(5), 766–772.CrossRefGoogle Scholar
  44. Schlichting, H. E. Jr. (1974). Periodicity and seasonality of airborne algae and protozoa. In H. Leith (Ed.), Phenology and seasonality modelling (Vol. 8, pp. 407–413). Ecological studies.Google Scholar
  45. Sharma, N. K., Rai, A. K., Singh, S., & Brown, R. M. (2007). Airborne algae: their present status and relevance. Journal of Phycology, 43(4), 615–627.CrossRefGoogle Scholar
  46. Sharma, N. K., Singh, S., & Rai, A. K. (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102, 252–259.CrossRefGoogle Scholar
  47. Sharma, N. K., & Singh, S. (2010). Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian Journal of Microbiology, 50, 468–473.Google Scholar
  48. Smith, P. E. (1973). The effect of some air pollutants and meteorological conditions on airborne algae and protozoa. Dissertation Abstracts International, 33, 2972–2978.Google Scholar
  49. Sokoloff, D. (1931). Esperiencias de transmission de microorganismos por el aire y los insectos. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 2, 167–169.Google Scholar
  50. Telford, R. J., Vandvik, V., & Birks, H. J. B. (2006). Dispersal limitations matter for microbial morphospecies. Science, 312, 1015.Google Scholar
  51. Tiberg, E. (1989). Microalgae as allergens with special emphasis on the genus Chlorella Beijerinck. Thesis, Acta Universitatis Upsaliensis, 235. Uppsala.Google Scholar
  52. Tiberg, E., Bergman, B., Wictorin, B., Willen, T. (1983). Occurrence of microalgae in indoor and outdoor environments in Sweden. In S. Nilsson & B. Raj (Eds.), Nordic Aerobiology (pp. 24– 9). Stockholm: Almquist and Wiksell International.Google Scholar
  53. Tiberg, E., & Einarsson, R. (1989). Variability of allergenicity in eight strains of the green algal genus Chlorella. International Archives of Allergy and Applied Immunology, 90(3), 301–306.CrossRefGoogle Scholar
  54. Tormo, R., Recio, D., Silva, I., & Munoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. European Journal of Phycology, 36(4), 385–390.CrossRefGoogle Scholar
  55. van Overeem, M. A. (1936). A sampling apparatus for aeroplankton. Proceedings of the Royal Academy Amsterdam, 33, 981–990.Google Scholar
  56. van Overeem, M. A. (1937). On green organisms occurring in the lower troposphere. Rec Trav Botan Neerl, 34, 389–439.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Biotechnology Laboratory, Medicinal Chemistry and PharmacologyCSIR- Indian Institute of Chemical TechnologyHabsiguda, HyderabadIndia
  2. 2.Chemical Biology DivisionCSIR-Indian Institute of Chemical TechnologyHabsiguda, HyderabadIndia

Personalised recommendations