Skip to main content
Log in

Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

SILAM atmospheric dispersion model and the HYSPLIT trajectory model were used to detect the source areas and calculate transport dynamics for airborne olive pollen observed in the city of Córdoba, southwest of Iberian Peninsula. The ECMWF weather data with 3-h time interval and spatial resolution of 25 × 25 km2 and 75 hybrid vertical levels were used as meteorological inputs in both models to produce a coherent set of results in order to compare these two different approaches. Seven episodes recorded before and after the local flowering season in 2006 were analyzed using both models. The results provided an indication of the origins of olive pollen recorded in the city of Córdoba, revealing the influence of three main source areas at specific periods. One area was located nearby, to the southwest of the city (early May), another in the south of the province (mid-May) and the third to the east (late May/early June). The SILAM model yielded more detailed and quantitative results when identifying olive pollen sources and charting transport dynamics. The results from the HYSPLIT trajectory approach and SILAM footprints were qualitatively similar. However, a weak point of back trajectories was their lower sensitivity to details of the transport, as well as the necessity of subjective analysis of the trajectory plots, which were subject for possible misinterpretations. Information on both pollen source locations and local tree flowering phenology was required in order to ensure consistent analysis of the influence of olive sources for both models. Further than this, due to the fact that both models are widely used in other research areas, the results of this work could have a widespread range of application, such as to simulate the transport of radionuclides, e.g., in emergency preparedness exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilera, F., & Ruiz Valenzuela, L. (2011). Altitudinal fluctuation in the pollen olive emission: an approximation from the olive groves of the south-east Iberian Peninsula. Aerobiologia. doi:10.1007/s10453-011-9244-9.

  • Díaz de la Guardia, C., Galán, C., Domínguez, E., Alba, F., Ruiz, L., Sabariego, S., et al. (1999). Variations in the main pollen season of Olea europaea L. at selected sites in the Iberian Peninsula. Polen, 10, 103–113.

    Google Scholar 

  • Draxler, R. R., Stunder, B., Rolph, G., Stein, A., & Taylor, A. (2012). HYSPLIT_4. User’s Guide, via NOAA ARL. http://www.arl.noaa.gov/documents/reports/HYSPLIT_user_guide.pdf. NOAA Air Resources Laboratory, Silver Spring, MD, Dec., 1997 revised March, 2012.

  • Erdtman, G. (1937). Pollen grains recovered from the atmosphere over the Atlantic. Acta Horticulturae Gothoburg, 12, 185–196.

    Google Scholar 

  • Feo-Brito, F., Mur-Gimeno, P., Carnés, J., Martín, R., Fernández-Caldas, E., Lara, P., et al. (2011). Olea europea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Annals of Allergy, Asthma & Immunology, 106, 146–152.

    Article  Google Scholar 

  • Florido, J. F., González Delgado, P., Saenz de San Pedro, B., Quiralte, J., Arias de Saavedra, J. M., Peralta, V., et al. (1999). High levels of Olea europaea pollen and relation with clinical findings. Annals of Allergy, Asthma & Immunology, 119, 133–137.

    CAS  Google Scholar 

  • Fornaciari, M., Galán, C., Mediavilla, A., Domínguez, E., & Romano, B. (2000). Aeropalynological and phenological study in two different olive Mediterranean areas: Córdoba (Spain) and Perugia (Italia). Plant Biosystems, 134, 199–204.

    Article  Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Management and quality manual. Spanish aerobiology network (REA). Córdoba, Spain: Servicio Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.

  • Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Domínguez, E. (2008). Modelling olive (Olea europaea L.) crop yield in Andalusia Region, Spain. Agronomy Journal, 100, 98–104.

    Article  Google Scholar 

  • Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.

    Article  Google Scholar 

  • Galperin, M. V. (1999). Approaches for improving the numerical solution of the advection equation. In Z. Zlatev, J. Dongarra, I. Dimov, J. Brandt, & P. J. Builtjes (Eds.), Large scale computations in air pollution modelling (pp. 161–172). The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Galperin, M. V. (2000). The approaches to correct computation of airborne pollution advection. In: Problems of ecological monitoring and ecosystem modelling (vol. XVII, pp. 54–68). St. Petersburg: Gidrometeoizdat (in Russian).

  • García-Mozo, H., Galán, C., & Vazquez, L. (2006). The reliability of geostatistic interpolation in olive field phenology. Aerobiologia, 22, 97–108.

    Google Scholar 

  • García-Mozo, H., Mestre, A., & Galán, C. (2010). Phenological trends in southern Spain: A response to climate change. Agricultural and Forest Meteorology, 150, 575–580.

    Article  Google Scholar 

  • Garcia-Mozo, H., Orlando, F., Galan, C., Fornaciari, M., Romano, B., Ruiz, L., et al. (2009). Olive flowering phenology variation between different cultivars in Spain and Italy: Modelling analysis. Theoretical and Applied Climatology, 95, 385–395.

    Article  Google Scholar 

  • Gassmann, I. M., & Pérez, F. C. (2006). Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). International Journal of Biometeorology, 50, 280–291.

    Article  Google Scholar 

  • Hernández-Ceballos, M. A., García-Mozo, H., Adame, J. A., Domínguez-Vilches, E., Bolívar, J. P., De la Morena, B. A., et al. (2011a). Determination of potential sources of Quercus airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiologia, 27, 261–276.

    Article  Google Scholar 

  • Hernández-Ceballos, M. A., García-Mozo, H., Adame, J. A., Domínguez-Vilches, E., De la Morena, B. A., Bolívar, J. P., et al. (2011b). Synoptic and meteorological characterization of olive pollen transport in Cordoba province (South-western Spain). International Journal of Biometeorology, 55, 17–34.

    Article  Google Scholar 

  • Hidalgo, P. J., Mangin, A., Galán, C., Hembise, O., Vázquez, L. M., & Sanchez, O. (2002). An automated system for surveying and forecasting Olea pollen dispersion. Aerobiologia, 18, 23–31.

    Article  Google Scholar 

  • Hirst, J. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 36, 257–265.

    Article  Google Scholar 

  • Jylha, K. (1991). Empirical scavenging coefficients of radioactive substances released from Cernobyl. Atmospheric Environment, 25A, 263–270.

    Article  CAS  Google Scholar 

  • Kuparinen, A. (2006). Mechanistic models for wind dispersal. Trends in Plant Science, 11, 298–301.

    Article  Google Scholar 

  • Kuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. (2007). Modelling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 208, 177–188.

    Article  Google Scholar 

  • Mahura, A., Korsholm, S. U., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia, 23, 171–179.

    Article  Google Scholar 

  • Maillard, R. (1975). L’olivier. Paris, France: INVUFLEC.

    Google Scholar 

  • Makra, L., Sánta, T., Matyasovszky, I., Damialis, A., Karatzas, K., Bergmann, K.-C., et al. (2010). Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. Journal of Geophysical Research, 115, D24220.

    Article  Google Scholar 

  • Marchuk, G. I. (1982). Mathematical modeling in the environmental problems (p. 320). Moscow: ‘‘Nauka’’ Publisher. (in Russian).

    Google Scholar 

  • Orlandi, F., Garcia-Mozo, H., Galán, C., Romano, B., Diaz de la Guardia, C., Ruiz, L., et al. (2010). Olive flowering trends in a large Mediterranean area (Italy and Spain). International Journal of Biometeorology, 54, 151–163.

    Article  Google Scholar 

  • Orlandi, F., Vazquez, L. M., Ruga, L., Bonofiglio, T., Fornaciari, M., García-Mozo, H., et al. (2005). Bioclimatic requirements for olive flowering in two Mediterranean Regions located at the same latitude (Andalucía, Spain, and Sicily, Italy). Annals of Agricultural and Environmental Medicine, 12, 47–52.

    Google Scholar 

  • Pérez-Landa, G., Ciais, P., Gangoiti, G., Palau, J. L., Carrara, A., Gioli, B., et al. (2007a). Mesoscale circulations over complex terrain in the Valencia coastal region, Spain—Part 2: Modeling CO2 transport using idealized surface fluxes. Atmospheric Chemistry and Physics, 7, 851–1868.

    Google Scholar 

  • Pérez-Landa, G., Ciais, P., Sanz, M. J., Gioli, B., Miglietta, F., Palau, J. L., et al. (2007b). Mesoscale circulations over complex terrain in the Valencia coastal region, Spain–Part 1: Simulation of diurnal circulation regimes. Atmospheric Chemistry and Physics, 7, 1851–1868.

    Article  Google Scholar 

  • Prank, P., Sofiev, M., Kaasik, M., Ruuskanen, T., Kukkonen, J., & Kulmala, M. (2008). The origin and formation mechanics of aerosol during a measurement campaign in Finnish Lapland, evaluated using the regional dispersion model SILAM. In C. Borrego & A. I. Miranda (Eds.), Air pollution modeling and its application XIX, NATO science for peace and security series-C: Environmental security (pp. 530–538). Berlin: Springer.

    Chapter  Google Scholar 

  • Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., et al. (2007). Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 41, 3577–3589.

    Article  CAS  Google Scholar 

  • Sauliene, I., & Veriankaite, L. (2006). Application of backward air mass trajectory analysis in evaluating airborne pollen dispersion. Journal of Environmental Engineering and Landscape Management, 14, 113–120.

    Google Scholar 

  • Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., & Polevova, S. (2008). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia. doi:10.1007/s10453-008-9100-8.

  • Skjoth, C. A., Hertel, O., & Ellermann, T. (2002). Use of the ACDEP trajectory model in the Danish nation-wide Background Monitoring Programme. Physics and Chemistry of the Earth, 27, 1469–1477.

    Article  Google Scholar 

  • Skjøth, C. A., Smith, M., Brandt, J., & Emberlin, J. (2009). Are the birch trees in Southern England a source of pollen in North London? International Journal of Biometeorology, 53, 75–86.

    Article  Google Scholar 

  • Skjoth, C. A., Sommer, J., Brandt, J., Hvidberg, M., Geels, C., Hansen, K. M., et al. (2008). Copenhagen—a significant source to birch (Betula) pollen? International Journal of Biometeorology, 52, 453–462.

    Article  Google Scholar 

  • Skjoth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37, 1204–1212.

    Article  CAS  Google Scholar 

  • Slinn, S. A., & Slinn, W. G. N. (1980). Predictions for particle deposition on natural waters. Atmospheric Environment Part A General Topics, 14, 1013–1016.

    Google Scholar 

  • Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 14, 1402–1411.

    Article  Google Scholar 

  • Sofiev, M. (2002). Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models. Journal of Geophysical Research Atmosphere, 107, ACH 10-1–ACH 10-8.

    Article  Google Scholar 

  • Sofiev, M., Belmonte, J., Gehrig, R., Izquierdo, R., Smith, M., Dahl, A., et al. (2012a). Chapter 5. Airborne pollen transport. In M. Sofiev & K.-C. Bergman (Eds.), Allergenic pollen. A review of the production, release, distribution and health impacts (pp. 127–161). Dordrecht: Springer.

  • Sofiev, M., Genikhovich, E., Keronen, P., & Vesala, T. (2010). Diagnosing the surface layer parameters for dispersion models within the meteorological-to-dispersion modeling interface. Journal of Applied Meteorology and Climatology, 49, 221–233.

    Article  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Jaeger, C., et al. (2012b). From Russia to Iceland: An evaluation of a large-scale pollen and chemical air pollution episode during April and May, 2006. In B. Clot, P. Comtois & B. Escamilla-Garcia (Eds.), Aerobiological monographs, towards a comprehensive vision, (Vol. 1, pp. 95–114). MeteoSwiss and University of Montreal.

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimaki, A. (2006a). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006b). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685.

    Article  CAS  Google Scholar 

  • Stach, A., Smith, M., SkjØth, C., & Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51, 275–286.

    Article  CAS  Google Scholar 

  • Van de Water, P. K., Keever, T., Main, C. E., & Levetin, E. (2003). An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA. International Journal of Biometeorology, 48, 74–82.

    Article  Google Scholar 

  • Van de Water, P. K., & Levetin, E. (2001). Contribution of upwind pollen sources to the characterization of Juniperus ashei phenology. Grana, 40, 133–141.

    Article  Google Scholar 

  • Van de Water, P. K., Watrud, L. S., Lee, E. H., Burdick, C., & King, G. A. (2007). Long-distance GM pollen movement of creeping bentgrass using modeled wind trajectory analysis. Ecological Applications, 17, 1244–1256.

    Article  Google Scholar 

  • Veriankaite, L., Siljamo, P., Sofiev, M., Sauliene, I., & Kukkonen, J. (2010). Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26, 47–62.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the European Social Fund and the Spanish Science Ministry for joint financing. Dr. García Mozo was supported by a “Ramón y Cajal” contract, and the Andalusia Regional Government funded the project entitled “Analisis de la Dinamica del Polen Atmosferico en Andalucia” (RNM-5958). The authors also thank the Science and Innovation Ministry for funding the project entitled “Impacto del Cambio Climatico en la Fenologia de especies vegetales del Centro y Sur de la Peninsula Iberica” (FENOCLIM) CGL2011-24146. Support from the EU FP7-HIALINE project is gratefully acknowledged. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport model and READY Web site (http://ready.arl.noaa.gov) used in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hernandez-Ceballos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez-Ceballos, M.A., Soares, J., García-Mozo, H. et al. Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiologia 30, 239–255 (2014). https://doi.org/10.1007/s10453-013-9324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-013-9324-0

Keywords

Navigation