Advertisement

Aerobiologia

, Volume 30, Issue 2, pp 123–136 | Cite as

The aerobiology of Fusarium graminearum

  • Melissa D. Keller
  • Gary C. Bergstrom
  • Elson J. Shields
Review Paper

Abstract

Current knowledge of the aerobiology of Fusarium graminearum sensu lato is based on decades of published research documenting the processes of spore discharge, atmospheric transport, and deposition in this important pathogen of cereal crops worldwide. Spores from both local and more distant sources have been shown to cause infection in susceptible cereal crops when environmental conditions are favorable. Susceptible crops may be exposed throughout a growing season to airborne spores deposited in rain events and in night-time hours through gravitational settling. Given that spores deposited on cereal florets originate from distant as well as local sources, disease risk forecasts, based currently on weather favoring local spore production during the days before peak infection (i.e., initiation of crop flowering), might be improved by placing greater emphasis on local weather directly favoring infection at and following the time of flowering. Also, considering the genetic diversity of fungal spores introduced to local agricultural fields following atmospheric transport, crop breeders should select resistant varieties based on screening against a set of fungal isolates that represent the range of virulence observed in fungal populations across a broader geographic region. An increased understanding of the aerobiology of F. graminearum contributes to the overall knowledge of plant pathogen transport in the atmosphere.

Keywords

Spore transport Fusarium head blight Gibberella zeae Disease forecasting 

References

  1. Andersen, A. L. (1948). The development of Gibberella zeae head blight of wheat. Phytopathology, 38, 599–611.Google Scholar
  2. Atanasoff, D. (1920). Fusarium blight (scab) of wheat and other cereals. Journal of Agricultural Research, 20, 1–41.Google Scholar
  3. Ayers, J. E., Pennypacker, S. P., Nelson, P. E., Pennypacker, B. W. (1975). Environmental factors associated with airborne ascospores of Gibberella zeae in corn and wheat fields. Phytopathology, 65, 835 (Abstr.).Google Scholar
  4. Aylor, D. E. (1975). Deposition of particles in a plant canopy. Journal of Applied Meteorology, 14, 52–57.CrossRefGoogle Scholar
  5. Aylor, D. E. (1986). A framework for examining inter-regional aerial transport of fungal spores. Agricultural and Forest Meteorology, 38, 263–288.CrossRefGoogle Scholar
  6. Aylor, D. E. (1990). The role of intermittent wind in the dispersal of fungal pathogens. Annual review of Phytopathology, 28, 73–92.CrossRefGoogle Scholar
  7. Aylor, D. E. (1998). The aerobiology of apple scab. Plant Disease, 82, 838–849.CrossRefGoogle Scholar
  8. Aylor, D. (1999). Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agricultural and Forest Meteorology, 97, 275–292.CrossRefGoogle Scholar
  9. Aylor, D. E., & Taylor, G. S. (1983). Escape of Peronospora tabacina spores from a field of diseased tobacco plants. Phytopathology, 73, 525–529.CrossRefGoogle Scholar
  10. Aylor, D. E., Wang, Y., & Miller, D. R. (1993). Intermittent wind close to the ground within a grass canopy. Boundary-Layer Meteorology, 66, 427–448.CrossRefGoogle Scholar
  11. Bai, G., & Shaner, G. (1994). Scab of wheat: Prospects for control. Plant Disease, 78, 760–766.CrossRefGoogle Scholar
  12. Bai, G.-H., & Shaner, G. (1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Disease, 80, 975–979.CrossRefGoogle Scholar
  13. Bai, G., & Shaner, G. (2004). Management and resistance in wheat and barley to Fusarium head blight. Annual review of Phytopathology, 42, 135–161.CrossRefGoogle Scholar
  14. Baird, R. E., Mullinix, B. G., Peery, A. B., & Lang, M. L. (1997). Diversity and longevity of the soybean residue mycobiota in a no-tillage system. Plant Disease, 81, 530–534.CrossRefGoogle Scholar
  15. Bergstrom, G.C., Cummings, J.A., Waxman, K.D., Bradley, C.A., Hazelrigg, A.L., Hershman, D.E., Nagelkirk, M., Sweets, L.E., Wegulo, S.N. (2012). Effects of local corn debris management on FHB and DON levels in fourteen U.S. wheat environments in 2011 and 2012. In Proceedings of the 2012 National Fusarium Head Blight Forum (pp. 5–6). Orlando, FL.Google Scholar
  16. Bergstrom, G. C., Waxman, K. D. (2008). Microplots in commercial wheat fields for quantifying the local contribution of Gibberella zeae from natural corn debris to Fusarium head blight and deoxynivalenol accumulation. In Proceedings of the 2008 National Fusarium Head Blight Forum (pp. 6–8). Indianapolis, IN.Google Scholar
  17. Bergstrom, G. C., Waxman, K. D., Schmale, D. G., III, Bradley, C. A., Sweets, L. E., Wegulo, S. N., Keller, M. D. (2010). Effects of within-field corn debris in microplots on FHB and DON in eleven U.S. wheat environments in 2010. In Proceedings of the 2010 National Fusarium Head Blight Forum (pp. 69–70). Milwaukee, WI.Google Scholar
  18. Beyer, M., & Verreet, J. A. (2005). Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. European Journal of Plant Pathology, 111, 381–389.CrossRefGoogle Scholar
  19. Beyer, M., Verreet, J. A., & Ragab, W. S. M. (2005). Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production. International Journal of Food Microbiology, 98, 233–240.CrossRefGoogle Scholar
  20. Booth, C. (1971). The genus Fusarium. Farnham Royal: Commonwealth Agricultural Bureaux for the Commonwealth Mycological Institute.Google Scholar
  21. Bushnell, W. R., Hazen, B. E., & Pritsch, C. (2003). Histology and physiology of Fusarium head blight. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 44–83). St. Paul, MN: APS Press.Google Scholar
  22. Caesar, A. J., & Pearson, R. C. (1983). Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology, 73, 1024–1030.CrossRefGoogle Scholar
  23. Cowger, C., Patton-Özkurt, J., Brown-Guedira, G., & Perugini, L. (2009). Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology, 99, 320–327.CrossRefGoogle Scholar
  24. Cowger, C., Sutton, A. L. (2005). The Southeastern U.S. Fusarium head blight epidemic of 2003. Plant Health Progress. doi: 10.1094/PHP-2005-1026-01-RS.
  25. Cox, C. S. (1987). The aerobiological pathway of microorganisms. Chichester: John Wiley & Sons.Google Scholar
  26. Cuomo, C. A., Güldener, U., Xu, J., Trail, F., Turgeon, B. G., Di Pietro, A., et al. (2007). The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 317, 1400–1402.CrossRefGoogle Scholar
  27. de Luna, L., Bujold, I., Carisse, O., & Paulitz, T. C. (2002). Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Canadian Journal of Plant Pathology, 24, 457–464.CrossRefGoogle Scholar
  28. De Wolf, E. D., Madden, L. V., & Lipps, P. E. (2003). Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428–435.CrossRefGoogle Scholar
  29. Del Ponte, E. M., Fernandes, J. M. C., & Bergstrom, G. C. (2007). Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. Journal of Phytopathology, 155, 577–581.CrossRefGoogle Scholar
  30. Del Ponte, E. M., Fernandes, J. M. C., & Pierobom, C. R. (2005). Factors affecting density of airborne Gibberella zeae inoculum. Fitopatologia Brasileira, 30, 55–60.CrossRefGoogle Scholar
  31. Del Ponte, E. M., Shah, D. A., & Bergstrom, G. C. (2003). Spatial patterns of Fusarium head blight in New York wheat fields suggest role of airborne inoculum. Plant Health Progress,. doi: 10.1094/PHP-2003-0418-01-RS.Google Scholar
  32. DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., et al. (2013). Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences, USA, 110, 2575–2580.CrossRefGoogle Scholar
  33. Dill-Macky, R. (2008). Cultural control practices for Fusarium head blight: problems and solutions. In Cereal research communications 3rd international FHB symposium. Szeged, Hungary.Google Scholar
  34. Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residue and tillage on Fusarium head blight of wheat. Plant Disease, 84, 71–76.CrossRefGoogle Scholar
  35. Dusabenyagasani, M., Dostaler, D., & Hamelin, R. C. (1999). Genetic diversity among Fusarium graminearum strains from Ontario and Quebec. Canadian Journal of Plant Pathology, 21, 308–314.CrossRefGoogle Scholar
  36. Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., & Paulitz, T. C. (2000). Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Canadian Journal of Botany, 78, 497–505.CrossRefGoogle Scholar
  37. Fernando, W. G. D., Paulitz, T. C., Seaman, W. L., Dutilleul, P., & Miller, J. D. (1997). Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology, 87, 414–421.CrossRefGoogle Scholar
  38. Ferrandino, F. J., & Aylor, D. E. (1987). Relative abundance and deposition gradients of clusters of urediniospores of Uromyces phaseoli. Phytopathology, 77, 107–111.CrossRefGoogle Scholar
  39. Francl, L., Shaner, G., Bergstrom, G., Gilbert, J., Pederson, W., Dill-Macky, R., et al. (1999). Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Disease, 83, 662–666.CrossRefGoogle Scholar
  40. Gilbert, J., & Fernando, W. G. D. (2004). Epidemiology and biological control of Gibberella zeae/Fusarium graminearum. Canadian Journal of Plant Pathology, 26, 464–472.CrossRefGoogle Scholar
  41. Gilbert, J., & Tekauz, A. (2000). Review: recent developments in research on Fusarium head blight of wheat in Canada. Canadian Journal of Plant Pathology, 22, 1–8.CrossRefGoogle Scholar
  42. Gilbert, J., Woods, S. M., & Kromer, U. (2008). Germination of ascospores of Gibberella zeae after exposure to various levels of relative humidity and temperature. Phytopathology, 98, 504–508.CrossRefGoogle Scholar
  43. Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.CrossRefGoogle Scholar
  44. Gregory, P. H. (1968). Interpreting plant disease dispersal gradients. Annual review of Phytopathology, 6, 189–212.CrossRefGoogle Scholar
  45. Gregory, P. H. (1973). The microbiology of the atmosphere. New York: John Wiley and Sons.Google Scholar
  46. Guenther, J. C., & Trail, F. (2005). The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia, 97, 229–237.CrossRefGoogle Scholar
  47. Hoffer, G. N., Johnson, A. G., & Atanasoff, D. (1918). Corn-rootrot and wheatscab. Journal of Agricultural Research, 13, 611–612.Google Scholar
  48. Horevaj, P., Gale, L. R., & Milus, E. A. (2011). Resistance in winter wheat lines to initial infection and spread within spikes by deoxynivalenol and nivalenol chemotypes of Fusarium graminearum. Plant Disease, 95, 31–37.CrossRefGoogle Scholar
  49. Inch, S., Fernando, D., & Gilbert, J. (2005). Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of Plant Pathology, 27, 357–363.CrossRefGoogle Scholar
  50. Ingold, C. T. (1967). Liberation mechanisms of fungi. In Airborne microbes: Seventeenth symposium of the society for general microbiology held at the Imperial College. London: Cambridge University Press. Google Scholar
  51. Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere. East Lansing: Michigan State University Press.Google Scholar
  52. Johnson, A.G., Dickson, J. G. (1921). Wheat scab and its control. USDA Farmers Bulletin (1224). Google Scholar
  53. Keller, M. D., & Shields, E. J. (2013). Aerobiological sampling efficiency of media-containing Petri plates for use in lower atmosphere spore collection. Aerobiologia,. doi: 10.1007/s10453-013-9306-2.Google Scholar
  54. Keller, M. D., Thomason, W. E., & Schmale, D. G, I. I. I. (2011). The spread of a released clone of Gibberella zeae from different amounts of infested corn residue. Plant Disease, 95, 1458–1464.CrossRefGoogle Scholar
  55. Keller, M. D., Waxman, K. D., Bergstrom, G. C., & Schmale, D. G, I. I. I. (2010). Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Disease, 94, 1151–1155.CrossRefGoogle Scholar
  56. Khonga, E. B., & Sutton, J. C. (1988). Inoculum production and survival of Gibberella zeae in maize and wheat residue. Canadian Journal of Plant Pathology, 10, 232–239.CrossRefGoogle Scholar
  57. Levizzani, V., Georgiadis, T., & Isard, S. A. (1998). Meteorological aspects of the aerobiological pathway. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods of aerobiology. Bologna, Italy: Associazione italiana di aerobiologia.Google Scholar
  58. Maldonado-Ramirez, S. L. (2001). Aerobiology of the wheat scab fungus, Gibberella zeae: Discharge, atmospheric dispersal, and deposition of ascospores. Ph.D. dissertation. Ithaca: Cornell University.Google Scholar
  59. Maldonado-Ramirez, S. L., Schmale, D. G, I. I. I., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 132, 20–27.CrossRefGoogle Scholar
  60. Markell, S. G., & Francl, L. J. (2003). Fusarium head blight inoculum: Species prevalence and Gibberella zeae spore type. Plant Disease, 87, 814–820.CrossRefGoogle Scholar
  61. Martinelli, J., Bocchese, C., Gale, L., Weiping, X., ODonnell, K., Kistler, H. (2001). Soybean is a host for Fusarium graminearum. In Proceedings of the 2001 National Fusarium Head Blight Forum (p. 136). Erlanger, KY.Google Scholar
  62. McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, R., Shaner, G., et al. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.CrossRefGoogle Scholar
  63. McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J., Ransom, J. (2008). Integrated strategies for Fusarium head blight management in the United States. In Cereal research communications 3rd international FHB symposium. Szeged, Hungary.Google Scholar
  64. McMullen, M. P., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease, 81, 1340–1348.CrossRefGoogle Scholar
  65. McMullen, M. P., & Stack, R. W. (1983). Fusarium species associated with grassland soils. Canadian Journal of Botany, 61, 2530–2538.CrossRefGoogle Scholar
  66. Miller, J. D., Culley, J., Fraser, K., Hubbard, S., Meloche, F., Ouellet, T., et al. (1998). Effect of tillage practice on Fusarium head blight of wheat. Canadian Journal of Plant Pathology, 20, 95–103.CrossRefGoogle Scholar
  67. Mishra, P. K., Tewari, J. P., Turkington, T. K., & Clear, R. M. (2009). Genetic evidence for a recent geographic expansion of 15-acetyldeoxynivalenol chemotypes of Fusarium graminearum in Canada. Canadian Journal of Plant Pathology, 31, 468–474.CrossRefGoogle Scholar
  68. Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxin in maize ears. European Journal of Plant Pathology, 109, 705–713.CrossRefGoogle Scholar
  69. Nita, M., De Wolf, E., Isard, S. (2007). Effects of solar radiation on the viability of Gibberella zeae ascospores. In Proceedings of the 2007 National Fusarium Head Blight Forum (p. 107). Kansas City, MO.Google Scholar
  70. Nita, M., De Wolf, E., Madden, L., Paul, P., Shaner, G., Adhikari, T., Ali, S., Stein, J., Osborne, L. (2006). Effect of corn residue level on disease intensity of Fusarium head blight (FHB) and on deoxynivalenol (DON) concentration: A multi-state field study. Phytopathology, 96, S85. (Abstr.).Google Scholar
  71. Oke, T. R. (1987). Boundary layer climates (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  72. Osborne, L. E., & Stein, J. M. (2007). Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119, 103–108.CrossRefGoogle Scholar
  73. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology, 44, 207–238.CrossRefGoogle Scholar
  74. Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004). Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology, 94, 1342–1349.CrossRefGoogle Scholar
  75. Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80, 674–678.CrossRefGoogle Scholar
  76. Pedgley, D. E. (1985). Concepts in atmospheric science as they relate to the movement of biotic agents. In Mackenzie, Barfield, Kennedy, & Berger (Eds.) The movement and dispersal of agriculturally important biotic agents (pp. 175–178). Baton Rouge, Louisiana: Claitors Publishing Division. Google Scholar
  77. Pereyra, S. A., & Dill-Macky, R. (2008). Colonization of the residue of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Disease, 92, 800–807.CrossRefGoogle Scholar
  78. Pereyra, S. A., Dill-Macky, R., & Sims, A. L. (2004). Survival and inoculum production of Gibberella zeae in wheat residue. Plant Disease, 88, 724–730.CrossRefGoogle Scholar
  79. Pestka, J. J. (2007). Deoxynivalenol: Toxicity, mechanisms, and animal health risks. Animal Feed Science and Technology, 137, 283–298.CrossRefGoogle Scholar
  80. Pestka, J. J. (2010). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663–679.CrossRefGoogle Scholar
  81. Pestka, J. J., & Smolinski, A. T. (2005). Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology & Environmental Health Part B: Critical Reviews, 8, 39–69.CrossRefGoogle Scholar
  82. Rabb, R. L. (1985). Conceptual bases to develop and use information on the movement and dispersal of biotic agents in agriculture. In Mackenzie, Barfield, Kennedy, & Berger (Eds.) The movement and dispersal of agriculturally important biotic agents (pp. 5–34). Baton Rouge, LA: Claitors Publishing Division.Google Scholar
  83. Reis, E. M. (1990). Effect of rain and relative humidity on the release of ascospores and on the infection of wheat heads by Gibberella zeae. Fitopatologia Brasileira, 15, 339–343.Google Scholar
  84. Roelfs, A. P. (1985). Epidemiology in North America. In W. R. Bushnell & A. P. Roelfs (Eds.), The cereal rusts (Vol. II, pp. 403–434). London: Academic Press.Google Scholar
  85. Rossi, V., Languasco, E., Pattori, E., & Giosuè, S. (2002). Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by head blight. Journal of Plant Pathology, 84, 53–64.Google Scholar
  86. Schaafsma, A. W., Tamburic-Ilinic, L., & Hooker, D. C. (2005). Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Canadian Journal of Plant Pathology, 27, 217–224.CrossRefGoogle Scholar
  87. Schilling, A. G., Miedaner, T., & Geiger, H. H. (1997). Molecular variation and genetic structure in field populations of Fusarium species causing head blight in wheat. Cereal Research Communications, 25, 549–554.Google Scholar
  88. Schmale, D. G, I. I. I., Arnsten, Q. A., & Bergstrom, G. C. (2005a). The forcible discharge distance of ascospores of Gibberella zeae. Canadian Journal of Plant Pathology, 27, 376–382.CrossRefGoogle Scholar
  89. Schmale, D. G, I. I. I., & Bergstrom, G. C. (2004). Spore deposition of the ear rot pathogen, Gibberella zeae, inside corn canopies. Canadian Journal of Plant Pathology, 26, 591–595.CrossRefGoogle Scholar
  90. Schmale, D. G., III, Bergstrom, G. C. (2007). The aerobiology and population genetic structure of Gibberella zeae. Plant Health Progress. doi: 10.1094/PHP-2007-0726-04-RV.
  91. Schmale, D. G, I. I. I., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C. (2006a). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology, 96, 1021–1026.CrossRefGoogle Scholar
  92. Schmale, D. G, I. I. I., Shah, D. A., & Bergstrom, G. C. (2005b). Spatial patterns of viable spore deposition of Gibberella zeae in wheat fields. Phytopathology, 95, 472–479.CrossRefGoogle Scholar
  93. Schmale, D. G, I. I. I., Shields, E. J., & Bergstrom, G. C. (2006b). Night-time spore deposition of the Fusarium head blight pathogen, Gibberella zeae, in rotational wheat fields. Canadian Journal of Plant Pathology, 28, 100–108.CrossRefGoogle Scholar
  94. Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.Google Scholar
  95. Shaner, G. (2003). Epidemiology of Fusarium head blight of small grain cereals in North America. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 84–119). St. Paul, MN: APS Press.Google Scholar
  96. Shields, D. E., & Testa, A. M. (1999). Fall migratory flight initiation of the potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae): Observations in the lower atmosphere using remote piloted vehicles. Agricultural and Forest Meteorology, 97, 317–330.CrossRefGoogle Scholar
  97. Snijders, C. H. A. (1990). Fusarium head blight and mycotoxin contamination of wheat, a review. Netherlands Journal of Plant Pathology, 96, 187–198.CrossRefGoogle Scholar
  98. Snyder, W. C., & Nash, S. M. (1968). Relative incidence of Fusarium pathogens of cereals in rotation plots at Rothamsted. Transactions of the British Mycological Society, 51, 417–425.CrossRefGoogle Scholar
  99. Sparks, A. N., Westbrook, J. K., Wolf, W. W., Pair, S. D., Raulston, J. R. (1985). Atmospheric transport of biotic agents on a local scale. In Mackenzie, Barfield, Kennedy, and Berger (Eds.) The movement and dispersal of agriculturally important biotic agents (pp. 203–217). Baton Rouge, LA: Claitors Publishing Division.Google Scholar
  100. Stack, R. (1989). A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Canadian Journal of Plant Pathology, 11, 137–142.CrossRefGoogle Scholar
  101. Stack, R. W. (1997). Gradients of Fusarium head blight in wheat along transects away from a concentrated source of Gibberella zeae ascospore inoculum. In Proceedings of the National Fusarium Head Blight Forum. St. Paul, MN. Google Scholar
  102. Stack, R. W. (1999). Return of an old problem: Fusarium head blight of small grains. Plant Health Progress,. doi: 10.1094/PHP-2000-0622-01-RV.Google Scholar
  103. Stakman, E. C., & Harrar, J. G. (1957). Principles of plant pathology. New York: Ronald Press.Google Scholar
  104. Stakman, E. C., Henry, A. W., Curran, G. C., & Christopher, W. N. (1923). Spores in the upper air. Journal of Agricultural Research, 24, 599–606.Google Scholar
  105. Stein, J. M., Osborne, L. E., Bondalapati, K. D., Glover, K. D., & Nelson, C. A. (2009). Fusarium head blight severity and deoxynivalenol concentration in wheat in response to Gibberella zeae inoculum concentration. Phytopathology, 99, 759–764.CrossRefGoogle Scholar
  106. Sung, J.-M., & Cook, R. J. (1981). Effect of water potential on reproduction and spore germination by Fusarium roseum ‘Graminearum’, ‘Culmorum’, and ‘Avenaceum’. Phytopathology, 71, 499–504.CrossRefGoogle Scholar
  107. Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.CrossRefGoogle Scholar
  108. Tallapragada, P., Ross, S. D., & Schmale, D. G, I. I. I. (2011). Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos, 21, 033122.CrossRefGoogle Scholar
  109. Teich, A. H., & Hamilton, J. R. (1985). Effect of cultural practices, soil phosphorus, potassium, and pH on the incidence of Fusarium head blight and deoxynivalenol levels in wheat. Applied and Environmental Microbiology, 49, 1429–1431.Google Scholar
  110. Teich, A. H., & Nelson, K. (1984). Survey of Fusarium head blight and possible effects of cultural practices in wheat fields in Lambton County in 1983. Canadian Plant Disease Survey, 64, 11–13.Google Scholar
  111. Tekauz, A., McCallum, B., & Gilbert, J. (2000). Review: Fusarium head blight of barley in western Canada. Canadian Journal of Plant Pathology, 22, 9–16.CrossRefGoogle Scholar
  112. Trail, F., & Common, R. (2000). Perithecial development by Gibberella zeae: A light microscopy study. Mycologia, 92, 130–138.CrossRefGoogle Scholar
  113. Trail, F., Gaffoor, I., & Vogel, S. (2005). Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 42, 528–533.CrossRefGoogle Scholar
  114. Trail, F., Xu, H., Loranger, R., & Gadoury, D. (2002). Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia, 94, 181–189.CrossRefGoogle Scholar
  115. Tschanz, A. T., Horst, R. K., & Nelson, P. E. (1975). Ecological aspects of ascospore discharge in Gibberella zeae. Phytopathology, 65, 597–599.CrossRefGoogle Scholar
  116. Tschanz, A. T., Horst, R. K., & Nelson, P. E. (1976). The effect of environment on sexual reproduction of Gibberella zeae. Mycologia, 68, 327–340.CrossRefGoogle Scholar
  117. US Food and Drug Administration guidance for industry and FDA: advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed. (2010). http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/NaturalToxins/ucm120184.htm.
  118. Walker, S. L., Leath, S., Hagler, W. M, Jr, & Murphy, J. P. (2001). Variation among isolates of Fusarium graminearum associated with Fusarium head blight in North Carolina. Plant Disease, 85, 404–410.CrossRefGoogle Scholar
  119. Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., et al. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.CrossRefGoogle Scholar
  120. Weise, M. V. (1987). Scab (head blight). In Compendium of wheat diseases 2nd edn. (pp. 16–18), St. Paul, MN: American Phytopathological Society. Google Scholar
  121. Windels, C. E. (2000). Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the northern Great Plains. Phytopathology, 90, 17–21.CrossRefGoogle Scholar
  122. Ye, H. Z. (1980). On the biology of the perfect stage of Fusarium graminearum Schw. Acta Phytophylacica Sinica, 7, 35–42.Google Scholar
  123. Yoshida, M., Kawada, N., & Nakajima, T. (2007). Effect of infection timing on Fusarium head blight and mycotoxin accumulation in open- and closed-flowering barley. Phytopathology, 97, 1054–1062.CrossRefGoogle Scholar
  124. Zeller, K. A., Bowden, R. L., & Leslie, J. F. (2003). Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology, 93, 874–880.CrossRefGoogle Scholar
  125. Zeller, K. A., Bowden, R. L., & Lestlie, J. F. (2004). Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Molecular Ecology, 13, 563–571.CrossRefGoogle Scholar
  126. Zinkernagel, V., Adolf, B., & Haberneyer, J. (1997). The spread of Fusarium species from the above ground level to the ears of wheat. Cereal Research Communications, 25, 677–679.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Melissa D. Keller
    • 1
  • Gary C. Bergstrom
    • 2
  • Elson J. Shields
    • 1
  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Department of Plant Pathology and Plant-Microbe BiologyCornell UniversityIthacaUSA

Personalised recommendations