Do indoor plants contribute to the aeromycota in city buildings?

Abstract

Many studies have focused on the sources of fungal contamination in indoor spaces. Pathogenic fungi have been detected in the potting mix of indoor plants; however, it is unclear if plants in indoor work spaces make qualitative or quantitative contributions to the aeromycota within buildings. The current work represents a field study to determine, under realistic office conditions, whether indoor plants make a contribution to the airborne aeromycota. Fifty-five offices, within two buildings in Sydney’s central business district, were studied over two seasonal periods: autumn and spring. We found that indoor plant presence made no significant difference to either indoor mould spore counts or their species composition. No seasonal differences occurred between autumn and spring samples. Indoor spore loads were significantly lower than outdoor levels, demonstrating the efficiency of the heating, ventilation and air conditioning systems in the buildings sampled. Neither the number of plants nor the species of plant used had an influence on spore loads; however, variations of those two variables offer potential for further studies. We conclude that conservative numbers of indoor plants make no substantial contribution to building occupants exposure to fungi.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adan, O. C. G., & Samson, R. A. (2011). Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  2. Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology. New York: Wiley.

    Google Scholar 

  3. American Conference of Governmental Industrial Hygienists (ACGIH) (1989). Fungi. Committee on Bioaerosols. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.

  4. American Conference of Governmental Industrial Hygienists (ACGIH) (1999). TLVs and BEIs. Threshold limit values for chemical substances and physical agents, biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.

  5. Anaissie, E. J., Stratton, S. J., Dignani, M. C., Summerbell, R. C., Rex, J. H., & Monson, T. P. (2002). Pathogenic Aspergillus species recovered from a hospital water system: A 3-year prospective study. Clinical Infectious Disease, 34, 780–789.

    Article  Google Scholar 

  6. ASHRAE (1992). Thermal environmental conditions for human occupancy. (Vol. 5). Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.

  7. Burge, H. A., Pierson, D. L., Groves, T. O., Strawn, K. F., & Mishra, S. K. (2000). Dynamics of airborne fungal populations in a large office building. Current Microbiology, 40(1), 10–16.

    Article  CAS  Google Scholar 

  8. Burge, H. A., Solomon, W. R., & Muilenberg, M. S. (1982). Evaluation of indoor plantings as allergen exposure sources. Journal of Allergy and Clinical Immunology, 70(2), 101–108.

    Article  CAS  Google Scholar 

  9. Chih-Shan, L., & Hsu, C.-W. (1997). Indoor pollution and sick building syndrome symptoms among workers in day care centres. Archives of Environmental Health, 52(3), 200.

    Article  Google Scholar 

  10. Costa, P. R., & James, R. W. (1999). Air conditioning and noise control using vegetation. In: Proceedings of the 8th International Conference on Indoor Air Quality and Climate, pp. 234–239.

  11. Dharmage, S., Bailey, M., Raven, J., Mitakakis, T., Thien, F., Forbes, A., et al. (1999). Prevalence and residential determinants of fungi within homes in Melbourne, Australia. Clinical & Experimental Allergy, 29(11), 1481–1489.

    Article  CAS  Google Scholar 

  12. El-Ani, A. S. (1975). Variation in vivo and isolation of Aspergillus fumigatus from a case of human aspergillosis. Mycologia, 67, 114–1118.

    Article  Google Scholar 

  13. Ellis, D., Davis, S., Alexiou, H., Handke, R., & Bartley, R. (2007). Descriptions of medical fungi (2nd ed.). Adelaide: Published by the Authors.

    Google Scholar 

  14. Engelhart, S., Rietschel, E., Exner, M., & Lange, L. (2009). Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics. International Journal of Hygiene and Environmental Health, 212(1), 18–20.

    Article  Google Scholar 

  15. Flannigan, B. (1997). Air sampling for fungi in indoor environments. Journal of Aerosol Science, 28(3), 381–392.

    Article  CAS  Google Scholar 

  16. Gonçalves, F., Bauer, H., Cardoso, M., Pukinskas, S., Matos, D., Melhem, M., et al. (2010). Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations. International Journal of Biometeorology, 54(4), 347–355.

    Article  Google Scholar 

  17. Gots, R. E., Layton, N. J., & Pirages, S. W. (2003). Indoor health: Background levels of fungi. AIHA Journal, 64(4), 427–438.

    Article  Google Scholar 

  18. Green, C. F., Scarpino, P. V., & Gibbs, S. G. (2003). Assessment and modeling of indoor fungal and bacterial bioaerosol concentrations. Aerobiologia, 19, 159–169.

    Article  Google Scholar 

  19. Grinn-Gofroń, A., & Rapiejko, P. (2009). Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central–Eastern Poland in 2004–2006 and relation to some meteorological factors. Atmospheric Research, 93(4), 747–758.

    Article  Google Scholar 

  20. Hargreaves, M., Parappukkaran, S., Morawska, L., Hitchins, J., He, C., & Gilbert, D. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane. Australia. Science of the Total Environment, 312(1–3), 89–101.

    Article  CAS  Google Scholar 

  21. Hedayati, M. T., Mohseni-Bandpi, A., & Moradi, S. (2004). A survey on the pathogenic fungi in soil samples of potted plants from Sari hospitals, Iran. Journal of Hospital Infection, 58(1), 59–62.

    Article  CAS  Google Scholar 

  22. Hess-Kosa, K. (2011). Indoor air quality: Sampling methodologies (2nd ed.). Boca Raton, FL, USA: Lewis Publishers, CRC Press.

    Google Scholar 

  23. Horner, W. E., Barnes, C., Codina, R., & Levetin, E. (2008). Guide for interpreting reports from inspections/investigations of indoor mold. Journal of Allergy and Clinical Immunology, 121(3), 592–597.

    Article  Google Scholar 

  24. Hunter, C. A., Grant, C., Flannigan, B., & Bravery, A. F. (1988). Mould in buildings: the air spora of domestic dwellings. International Biodeterioration, 24(2), 81–101.

    Article  Google Scholar 

  25. Jantunen, M. J., Nevalainen, A., Rytkonen, A. L., Pellikka, M., & Kalliokoski, P. (1987). The effect of humidification on indoor fungal spore counts in apartment buildings. In Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin. pp. 643–647.

  26. Kenyon, E. M., Russell, L. H., & McMurray, D. N. (1984). Isolation of pathogenic Aspergillus species from commercially prepared potting media. Mycopathologia, 87(2), 171–173.

    Article  CAS  Google Scholar 

  27. Klich, M. A., & Pitt, J. I. (1988). A laboratory guide to common aspergillus species and their teleomorphs: Sydney. Australia: CSIRO.

    Google Scholar 

  28. Lass-Flörl, C., Rath, P. M., Niederwieser, D., Kofler, G., Würzner, R., Krezy, A., et al. (2000). Aspergillus terreus infections in haematological malignancies: molecular epidemiology suggests association with in-hospital plants. Journal of Hospital Infection, 46(1), 31–35.

    Article  Google Scholar 

  29. Lehtonen, M., Reponen, T., & Nevalainen, A. (1993). Everyday activities and variation of fungal spore concentrations in indoor air. International Biodeterioration and Biodegradation, 31(1), 25–39.

    Article  Google Scholar 

  30. Levetin, E. (2004). Methods for aeroallergen sampling. Current Allergy and Asthma Reports, 4(5), 376–383.

    Article  Google Scholar 

  31. Li, D.-W., & Kendrick, B. (1995). A year-round comparison of fungal spores in indoor and outdoor air. Mycologia, 87(2), 190–195.

    Article  Google Scholar 

  32. Madelin, T. M. (1994). Fungal aerosols: A review. Journal of Aerosol Science, 25(8), 1405–1412.

    Article  CAS  Google Scholar 

  33. Maschmeyer, G., Haas, A., & Cornely, O. A. (2007). Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs, 67(11), 1567–1601.

    Article  CAS  Google Scholar 

  34. Mendell, M. J., Mirer, A. G., Cheung, K., Tong, M., & Douwes, J. (2011). Respiratory and allergic health effects of dampness, mold, and dampness. Related agents: A review of the epidemiologic evidence. Environmental Health Perspectives, 119(6), 748–756.

    Article  CAS  Google Scholar 

  35. Mentese, S., Arisoy, M., Rad, A. Y., & Güllü, G. (2009). Bacteria and Fungi Levels in Various Indoor and Outdoor Environments in Ankara, Turkey. CLEAN—Soil, Air, Water, 37(6), 487–493.

    Article  CAS  Google Scholar 

  36. Meyer, H. W., Wurtz, H., Suadicani, P., Valbjorn, O., Sigsgaard, T., & Gyntelberg, F. (2004). Molds in floor dust and building-related symptoms in adolescent school children. Indoor Air, 14(1), 65–72.

    Article  CAS  Google Scholar 

  37. Miller, J. D., & Young, J. C. (1997). The use of ergosterol to measure exposure to fungal propagules in indoor air. American Industrial Hygiene Association Journal, 58, 39–43.

    Article  CAS  Google Scholar 

  38. Mycology Online (2008–2012). Identification of Medically Important Fungi. http://www.mycology.adelaide.edu.au/ Accessed 28 April 2008–2013 June 2010.

  39. O’Gorman, C. M. (2011). Airborne Aspergillus fumigatus conidia: a risk factor for aspergillosis. Fungal biology reviews, 25(3), 151–157.

    Article  Google Scholar 

  40. O’Gorman, C. M., & Fuller, H. T. (2008). Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospheric Environment, 42(18), 4355–4368.

    Article  Google Scholar 

  41. Parat, S., Perdrix, A., Fricker-Hidalgo, H., Saude, I., Grillot, R., & Baconnier, P. (1997). Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year. Atmospheric Environment, 31(3), 441–449.

    Article  CAS  Google Scholar 

  42. Pasanen, A. L., Pasanen, P., Jantunen, M. J., & Kalliokoski, P. (1991). Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment. Part A. General Topics, 25(2), 459–462.

    Article  Google Scholar 

  43. Reponen, T., Lehtonen, M., Raunemaa, T., & Nevalainen, A. (1992). Effect of indoor sources on fungal spore concentrations and size distributions. Journal of Aerosol Science, 23, Supplement 1(0), 663–666.

    Google Scholar 

  44. Saldanha, R., Manno, M., Saleh, M., Ewaze, J. O., & Scott, J. A. (2008). The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air, 18(6), 464–472.

    Article  CAS  Google Scholar 

  45. Singh, J., Yu, C. W. F., & Kim, J. T. (2010). Building pathology, investigation of sick buildings—toxic moulds. Indoor and Built Environment, 19(1), 40–47.

    Article  Google Scholar 

  46. Smith, C. M., & Kagan, S. H. (2005). Prevention of systemic mycoses by reducing exposure to fungal pathogens in hospitalized and ambulatory neutropenic patients. Oncology Nursing Forum, 32(3), 565–579.

    Article  Google Scholar 

  47. Staib, F., Tompak, B., Thiel, D., & Blisse, A. (1978). Aspergillus fumigatus and Aspergillus niger in two potted ornamental plants, cactus (Epiphyllum truncatum) and clivia (Clivia miniata). Biological and epidemiological aspects. Mycopathologia, 66(1), 27–30.

    Article  CAS  Google Scholar 

  48. Summerbell, R. C., Krajden, S., & Kane, J. (1989). Potted plants in hospitals as reservoirs of pathogenic fungi. Mycopathologia, 106, 13–22.

    Article  CAS  Google Scholar 

  49. Takahashi, T. (1997). Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia, 139, 23–33.

    Article  CAS  Google Scholar 

  50. Takeda, M., Saijo, Y., Yuasa, M., Kanazawa, A., Araki, A., & Kishi, R. (2009). Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. International Archives of Occupational and Environmental Health, 82(5), 583–593.

    Article  CAS  Google Scholar 

  51. Zhen, S., Li, K., Yin, L., Yao, M., Zhang, H., Chen, L., et al. (2009). A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations. Journal of Aerosol Science, 40(6), 503–513.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by Horticulture Australia Ltd with a nursery industry levy and voluntary contributions from the National Interior Plantscape Association (Australia) and matched funds from the Australian Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fraser R. Torpy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Torpy, F.R., Irga, P.J., Brennan, J. et al. Do indoor plants contribute to the aeromycota in city buildings?. Aerobiologia 29, 321–331 (2013). https://doi.org/10.1007/s10453-012-9282-y

Download citation

Keywords

  • Indoor air quality
  • Aeromycota
  • Indoor plants
  • Airborne fungi
  • Office buildings