Skip to main content
Log in

Differences in atmospheric trees pollen seasons in winter, spring and summer in two European geographic areas, Spain and Italy

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The global climate change reported over recent years may prompt changes in the atmospheric pollen season (APS). The aim of this study is to evaluate the possible impact provoked by meteorological conditions variations at different seasons of the year or different geographical areas on APS. Alnus, Betula and Castanea atmospheric pollen seasons and trends during the last 17 years at Ourense and Vigo (Galicia—NW Spain) and Perugia (Italy) were analysed. Possible incidence of the meteorological trends observed in the different cities on the atmospheric pollen seasons and the chill and heat requirements were evaluated. Pollen data from Ourense, Vigo and Perugia (1995–2011) were used. Pollen sampling was performed using LANZONI VPPS 2000 volumetric traps (Hirst in Ann Appl Biol 36:257–265, 1952), placed on top of different buildings at a similar height from the ground. Several methods, dates and threshold temperatures for determining the chill and heat requirements needed to trigger flowering were tested. Different temporary order in the pollination sequence was observed between the three pollen types studied in the three sites. Alnus flowers few days in advance in Ourense respecting to Vigo and 1 month earlier than Perugia. The Betula flowering start date in Ourense and Vigo is almost simultaneous, taking place only 5 days in advance with respect to Perugia. Finally, scarce differences in the APS onset of Castanea were detected between the three cities. The variations observed among the two areas (Umbria, Italy and Galicia, Spain) in the onset of pollen season in the winter or spring flowering trees could be explained by differences in the thermal requirements needed for flowering as consequence of the climatic conditions recorded during the previous period to flowering. The length of the chilling and heat period as well as the thermal requirements obtained showed differences between geographical areas. The chill requirements accumulated were higher in Perugia than Ourense and Vigo. By contrary, the lowest heat accumulation was achieved in Perugia. The observed trends in the APS characteristics and the weather-related parameters were not homogeneous both in the pollen types and sites. The pollen index of Betula and Castanea pollen in Ourense shows a significant trend to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., & Scheifinger, H. (2002). Changes in European spring phenology. International Journal of Climatology, 22, 1727–1738.

    Article  Google Scholar 

  • Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.

    Article  Google Scholar 

  • Arenas, L., González, C., Tabarés, J. M., Iglesias, I., Méndez, J. & Jato, V. (1996), Sensibilización cutánea a pólenes en pacientes afectos de rinoconjuntivitis-asma en la población de Ourense en el año 1994–95. 1er Simposio Europeo de Aerobiologia, Santiago de Compostela, pp. 93–94.

  • Aron, R. (1983). Availability of chilling temperatures in California. Agricultural Meteorology, 28, 351–363.

    Article  Google Scholar 

  • Belmonte, J., Roure, J. M., & March, F. X. (1996). El espectro polínico atmosférico de la ciudad de Vigo, dinámica y repercusión en la clínica de las alergias. Análisis de seis años de datos. 1 er Simposio Europeo de Aerobiologia, Santiago de Compostela, pp. 97–98.

  • Cecchi, L., D’Amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy, 65, 1073–1081.

    CAS  Google Scholar 

  • Cesaraccio, C., Spano, D., Snyder, R. L., & Duce, P. (2004). Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology, 126, 1–13.

    Article  Google Scholar 

  • Chmielewski, F. M., & Rötzer, T. (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101–112.

    Article  Google Scholar 

  • Chuine, I., Cor, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.

    Article  Google Scholar 

  • Chuine, I., & Cour, P. (1999). Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytologist, 143, 339–349.

    Article  Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990. doi:10.1111/j.1398-9995.2007.01393.x.

    Article  Google Scholar 

  • Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., & Rantio-Lehtimaki, A. (2002). Responses in the start of Betula (birch) pollen season to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170.

    Article  CAS  Google Scholar 

  • Emberlin, J., Jäeger, S., Dominguez, E., Galán, C., Hodal, L., Mandrioli, P., et al. (2000). Temporal and geographical variations in grass pollen seasons in areas of Western Europe: an analysis of season dates at sites of the European pollen information system. Aerobiologia, 16, 373–379.

    Article  Google Scholar 

  • Emberlin, E., Mullins, J., Corden, J., Millington, W., Brooke, M., Savage, M., et al. (1997). The trend to earlier birch pollen seasons in the UK: A biotic response to changes in weather conditions? Grana, 36, 29–33.

    Article  Google Scholar 

  • Emberlin, J., Savage, J., & Jones, S. (1993). Annual variations in grass pollen seasons in London, 1961–1990: Trends and forecast models. Clinical Experimental Allergy, 23, 911–918.

    Article  CAS  Google Scholar 

  • Emberlin, J., & Smith, M. (2006). A 30 day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50, 233–242. doi:10.1007/s00484-005-0010-y.

    Article  Google Scholar 

  • Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 196, 1689–1691.

    Article  Google Scholar 

  • Frei, Th. (1998). The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grasses. Grana, 37, 172–179.

    Article  Google Scholar 

  • Frei, Th., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52(7), 667–674.

    Article  Google Scholar 

  • Frei, T., Torricelli, R., Peeters, A. G., & Wüthrich, B. (1995). The relationship between airborne pollen distribution and the frequency of specific pollen sensitization at two climatically different locations in Switzerland. Aerobiologia, 11(4), 269–273.

    Article  Google Scholar 

  • Frenguelli, G., Bricchi, E., Romano, B., Ferranti, M. F., & Antognozzi, E. (1992). The role of the air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia, 8, 415–418.

    Article  Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Spanish aerobiological network: management and quality control. p. 61 Servicio de Publicaciones University of Córdoba. Córdoba, Spain.

  • Galán, C., Garcia-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Trigo, M. M. (2005). Heat requierement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.

    Article  Google Scholar 

  • Garcia-Mozo, H., Galán, C., Jato, V., Belmonte, J., Díaz de la Guardia, C., Fernández, D., et al. (2006). Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agriculture Environment Medicine, 13, 209–224.

    Google Scholar 

  • Gordo, O., & Sanz, J. V. (2009). Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15(8), 1930–1948.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 36, 257–265.

    Article  Google Scholar 

  • Ibañez, I., Primack, R. B., Miller-Rushing, A. J., Ellwood, E., Higuchi, H., Don Lee, S., et al. (2010). Forecasting phenology under global warming. Philosophy Transactions on Royal Society B, 365, 3247–3260. doi:10.1098/rstb.2010.0120.

    Article  Google Scholar 

  • Izco, J. (1994). O bosque Atlántico. In C. Vales (Ed.), Os Bosques Atlánticos Europeos. La Coruña: Bahía.

    Google Scholar 

  • Jato, V., Aira, M. J., Iglésias, M. I., Alcázar, P., Cervigón, P., Fernández, D., et al. (1999). Aeropalynology of birch (Betula sp.) in Spain. Pollen, 10, 39–49.

    Google Scholar 

  • Jato, V., Frenguelli, G., Rodríguez-Rajo, F. J., & Aira, M. J. (2000). Temperature requirements of Alnus pollen in Spain and Italy (1994–1998). Grana, 39, 240–245.

    Article  Google Scholar 

  • Jato, V., Méndez, J., Rodríguez-Rajo, F. J., & Seijo, C. (2002a). The relationship between the flowering phenophase and airborne pollen of Betula in Galicia (N.W. spain). Aerobiologia, 18, 55–64.

    Article  Google Scholar 

  • Jato, V., Rodríguez-Rajo, F. J., Alcázar, P., De Nuntiis, P., Galán, C., & Mandrioli, P. (2006). May the definition of Pollen Season influence aerobiological results? Aerobiologia, 22, 13–25.

    Article  Google Scholar 

  • Jato, V., Rodríguez-Rajo, F. J., Dacosta, N., & Aira, M. J. (2004). Heat and chill requirements of Fraxinus flowering in Galicia (NW Spain). Grana, 43, 217–223.

    Article  Google Scholar 

  • Jato, V., Rodríguez-Rajo, F. J., Méndez, J., & Aira, M. J. (2002b). Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. International Journal of Biometeorology, 46, 176–184.

    Article  CAS  Google Scholar 

  • Jato, V., Rodríguez-Rajo, F. J., Seijo, M. C., & Aira, M. J. (2009). Poaceae pollen in Galicia (N.W. Spain): Characterisation and recent trends in atmospheric pollen season. International Journal of Biometeorology, 53(3), 333–344. doi:10.1007/s00484-009-0220-9.

    Article  CAS  Google Scholar 

  • Kramer, K. (1994). Selecting a model to predict the onset of growth of Fagus sylvatica. Journal of Applied Ecology, 31, 172–181.

    Article  Google Scholar 

  • Lebourgeois, F., Pierrat, J. C., Perez, V., Piedallu, C., Cecchini, S., & Ulrich, E. (2010). Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. International Journal of Biometeorology, 54, 563–581.

    Article  Google Scholar 

  • Linderholm, H. W. (2006). Growing season changes in the last century. Agricultural and Forest Meteorology, 137, 1–14.

    Article  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global Climate Projections. In Climate Change 2007. The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 501–504.

    Article  Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006a). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.

    Article  Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., & Roy, D. B. (2006b). Altered geographic and temporal variability in phenology in response to climate change. Global Ecology and Biogeography, 15, 498–504.

    Google Scholar 

  • Moreno, G. (1990). Vascular plants. In: Castroviejo S, Láinz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L (Eds.): Iberian Flora. Vascular Plants of the Iberian península and Balears Islands. Vol. II. Real JardínBotánico, CSIC, Madrid.

  • Myking, T., & Heide, O. M. (1995). Dormancy release and chilling requirements of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiology, 15, 697–704.

    Article  Google Scholar 

  • Nordli, O., Wielgolaski, F. E., Bakken, A. K., Hjeltnes, S. H., Mage, F., Sivle, A., et al. (2008). Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. International Journal of Biometeorology, 52, 625–639.

    Article  CAS  Google Scholar 

  • Perez Muñuzuri, V., Fernández Cañamero, M., Gomez-Gesteira, J. R. (coor.). (2009). Evidencias del Cambio Climático en Galicia. Xunta de Galicia.

  • Primack, R. B., Ibáñez, I., Higuchi, H., Lee, S. D., Miller-Rushing, A. J., Wilson, A. M., et al. (2009). Spatial and interspecific variability in phenological responses to warming temperatures. Biological Conservation, 142, 2569–2577.

    Article  Google Scholar 

  • Recio, M., Rodríguez Rajo, F. J., Jato, V., Trigo, M. M., & Cabezudo, B. (2009). The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Málaga and Vigo. Climatic Change, 97, 215–228.

    Article  Google Scholar 

  • Richardson, A. D., Hollinger, D. Y., Dail, D. B., Lee, J. T., Munger, J. W., & O’Keefe, J. (2009). Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiology, 29, 321–331.

    Article  CAS  Google Scholar 

  • Rickman, R. W., Klepper, B. L., & Peterson, C. M. (1983). Time distributions for describing appearance of specific culms of Winter wheat. Agronomy Journal, 75, 551–556.

    Article  Google Scholar 

  • Rivas-Martínez, S. (1987). Memoria del mapa de series de vegetaciónde España. Ministerio de Agricultura, Pesca y Alimentación. Serie Técnica, Madrid, Icona.

  • Rodríguez-Rajo, F. J., Aira, M. J., Fernández-González, M., Seijo, C., & Jato, V. (2010). Recent trends in airborne pollen for tree species in Galicia, NW Spain. Climate Research, 48, 281–291.

    Article  Google Scholar 

  • Rodríguez-Rajo, F. J., Dopazo, A., & Jato, V. (2004). Environmental factors affecting the start of pollens season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Annals of Agriculture Environment Medicine, 11, 35–44.

    Google Scholar 

  • RodrÍguez-Rajo, F. J., Fernández-González, D., Vega-Maray, A., Suárez, F. J., Valencia-Barrera, R. M., & Jato, V. (2006). Biometeorological characterization of the winter in northwest Spain based on Alnus pollen flowering. Grana, 45, 288–296.

    Article  Google Scholar 

  • Rodriguez-Rajo, F. J., Frenguelli, G., & Jato, M. V. (2003). Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47, 117–125.

    CAS  Google Scholar 

  • Rogers, Ch. A., Wayne, P. M., Macklin, E. A., Muilenberg, M. L., Wagner, Ch. J., Epstein, P. R., et al. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on Ragweed (Ambrosia artemisiifolia L.) Pollen Production. Environmental Health Perspectives, 114(6), 865–869.

    Article  CAS  Google Scholar 

  • Sparks, T. (2000). The long-term phenology of woodland species in Britain. In K. S. Kirby & M. D. Morecrott. (Eds.) Long-term studies in British Woodland. English Nature Science, 34, 98–105.

  • Spieksma, F. T. M., Corden, J. M., Detandt, M., Millington, W. M., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica and Artemisia). At five pollen-monitoring stations in Western Europe. Aerobiologia, 19, 171–184.

    Article  Google Scholar 

  • Spieksma, F. T. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34, 51–57.

    Article  Google Scholar 

  • Sutra, J. P. (1987). Chestnut pollen counts related to patients pollinosis in Paris. Advanced Aerobiology, 51, 113–117.

    Article  CAS  Google Scholar 

  • Torben, B. A. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.

    Article  Google Scholar 

  • Wielgolaski, F. E. (2001). Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology, 45, 196–202.

    Article  CAS  Google Scholar 

  • Wielgolaski, F. E. (2003). Climatic factors governing plant phenological phases along a Norwegian fjord. International Journal of Biometeorology, 47, 213–220.

    Article  CAS  Google Scholar 

  • Wielgolasky, F. E. (1999). Starting dates and basic temperatures in phenological observations of plants. International Journal of Biometeorology, 42, 158–168.

    Article  Google Scholar 

  • Zalom, F. G., Gooddell, P. B., Wilson, L. T., Barnet, W. W., & Bentley, W. J. (1983). Degree-days: the calculation and use of heat units in pest management. University of California DANR Leaflet, 21, 37.

    Google Scholar 

  • Ziska, L. H., & Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Australian Journal of Plant Physiology, 27(10), 893–898.

    Google Scholar 

Download references

Acknowledgments

The research conducted was supported by a grant from the Spanish Education Ministry for stays at foreign Universities (PR2009-0433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Jato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jato, M.V., Rodríguez-Rajo, F.J., Aira, M.J. et al. Differences in atmospheric trees pollen seasons in winter, spring and summer in two European geographic areas, Spain and Italy. Aerobiologia 29, 263–278 (2013). https://doi.org/10.1007/s10453-012-9278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9278-7

Keywords

Navigation