Skip to main content
Log in

Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The biological loading of viable, cultivable airborne microbes (heterotrophic bacteria, actinobacteria and fungi) in 6 size fractions as well as the three different fractions of respirable particulate matter (PM1, PM2.5 and PM10) and their relationship to meteorological conditions were studied in the ambient air due to health-related interests. An Andersen six stage viable particle impactor and a MAS 100 sampler were used for microbial measurements. 82 measurements were performed at three different periods (41 days) at a suburban, residential site in the city of Chania (Crete, Greece) during the period from April 2008 to June 2009. The concentrations of the viable, cultivable airborne microbes (bioaerosols) as well as of the PM1, PM2.5 and PM10 were highly variable during the whole measurement period. Among the airborne microbes, fungi presented the most abundant taxonomic group in the ambient air. A characteristic profile of the mean size distribution of biological loading in different PM fractions was obtained for every measured microbial taxonomic group. Although, the highest concentrations of the airborne fungi and actinobacteria were determined at aerodynamic diameters between 2.1 and 3.3 μm, a nearly equal distribution of the mean concentrations of the airborne heterotrophic bacteria was observed in the six different size fractions. However, two small maxima were observed at the airborne heterotrophic bacteria distribution, one at the fraction with aerodynamic diameters between 1.1 and 2.1 μm, and at other at the coarse fraction with aerodynamic diameter larger than 7 μm. A considerable part of the airborne microbes Cycloheximide per mL of growth medium of bacteriwere resistant to drugs. Between 10 and 40 % of the viable, cultivable airborne microbes were resistant to low concentrations of drugs (5–10 μg of Streptomycin or a or fungi, respectively). Furthermore, multiple linear regression of the data showed that the variation in fungi concentrations depends on the variation in PM10 mass concentration, PM1 number concentration, relative humidity and solar radiation. Likewise, the concentration of heterotrophic bacteria was found proportional to the values of relative humidity and fungal concentration, whereas was negatively correlated to the solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari, A., Reponen, T., Grinshpun, S. A., Martuzevicius, D., & LeMasters, G. (2006). Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environmental Pollution, 140, 16–28.

    Article  CAS  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169.

    CAS  Google Scholar 

  • Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., & Delort, A.-M. (2007). Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: Major groups and growth abilities at low temperatures. FEMS Microbiology Ecology, 59, 242–254.

    Article  CAS  Google Scholar 

  • Ariya, P. A., & Amyot, M. (2004). New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmospheric Environment, 38, 1231–1232.

    Article  CAS  Google Scholar 

  • Bauer, H., Kasper-Giebl, A., Zibuschka, F., Hitzenberger, R., Kraus, F. G., & Puxbaum, H. (2002). Determination of the carbon content of airborne fungal spores. Analytical Chemistry, 74(1), 91–95.

    Article  CAS  Google Scholar 

  • Boreson, J., Dillner, A. M., & Peccia, J. (2004). Correlating bioaerosol load with PM2.5 and PM10cf concentrations: A comparison between natural desert and urban-fringe aerosols. Atmospheric Environment, 38, 6029–6041.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Moberg Parker, J. P., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National academy of Sciences of the United States of America, 104, 299–304.

    Article  CAS  Google Scholar 

  • Burch, M., & Levetin, E. (2002). Effects of meteorological condition on spore plumes. International Journal of Biometeorology, 46, 107–117.

    Article  CAS  Google Scholar 

  • Cheng, S. M., & Foght, J. M. (2007). Cultivation-independent and -dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbiology Ecology, 59, 318–330.

    Article  CAS  Google Scholar 

  • Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B, 64, 15598. doi:10.3402/tellusb.v64i0.15598.

    Article  Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid single-particle lagrangian integrated trajectory). Model access via NOAA ARL READY. Website NOAA Air Resources Laboratory, Silver Spring, MD. Retrieved from http://www.arl.noaa.gov/ready/hysplit4.html. Accessed 20 Nov 2011.

  • EMEP. (2011). Transboundary particulate matter in Europe. EMEP Report 4.

  • Fierer, N., Liu, Z., Rodríguez-Hernández, M., Knight, R., Henn, M., & Hernandez, M. T. (2008). Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology, 74(1), 200–207.

    Article  CAS  Google Scholar 

  • Garrison, V. H., Foreman, W. T., Genualdi, S., Griffin, D. W., Kellogg, C. A., Majewski, M. S., et al. (2006). Saharan dust—a carrier of persistent organic pollutants, metals and microbes to the Caribbean? Revista de Biologia Tropical (International Journal of Tropical Biology and Conservation), 54(3), 9–21.

    Google Scholar 

  • Gomiscek, B., Hauck, Η., Stopper, S., & Preining, O. (2004). Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP—project. Atmospheric Environment, 38, 3917–3934.

    Article  CAS  Google Scholar 

  • Griffin, D. W., Garrison, V. H., Herman, J. R., & Shinn, E. A. (2001). African desert dust in the caribbean atmosphere: Microbiology and public health. Aerobiologia, 17, 203–213.

    Article  Google Scholar 

  • Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.

    Article  Google Scholar 

  • Hinds, W. C. (1999). Aerosol technology. London: Wiley.

    Google Scholar 

  • Jaenicke, R. (2005). Abundance of cellular material and proteins in the atmosphere. Science, 308, 73.

    Article  CAS  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of the Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Kalogerakis, N., Paschali, D., Lekaditis, V., Pantidou, A., Eleftehriadis, K., & Lazaridis, M. (2005). Indoor air quality -bioaerosol measurements in domestic and office premises. Journal of Aerosol Science, 36, 751–761.

    Article  CAS  Google Scholar 

  • Karra, S., & Katsivela, E. (2007). Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site. Water Research, 41, 1355–1365.

    Article  CAS  Google Scholar 

  • Kellogg, C. A., Griffin, D. W., Garrison, V. H., Peak, K. K., Royall, N., Smith, R. R., et al. (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia, 20, 99–110.

    Article  Google Scholar 

  • Kopanakis, I., Eleftheriadis, K., Mihalopoulos, N., Lydakis-Simantiris, N., Katsivela, E., Pentari, D., et al. (2012). Physico-chemical characteristics of particulate matter in the Eastern Mediterranean. Atmospheric Research, 106, 93–107.

    Article  CAS  Google Scholar 

  • Lazaridis, M., Dzumbova, L., Kopanakis, I., Ondracek, J., Glytsos, T., Aleksandropoulou, V., et al. (2008). PM10 and PM2.5 levels in the Eastern Mediterranean (Akrotiri Research Station, Crete, Greece). Water, Air, and Soil pollution, 189, 85–101.

    Article  CAS  Google Scholar 

  • Li, M., Qi, J., Zhang, H., Huang, S., Li, L., & Gao, D. (2011). Concentration and size distribution in an outdoor environment in the Qingdao coastal region. Science of the Total Environment, 409, 3812–3819.

    Article  CAS  Google Scholar 

  • Lighthart, B. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274.

    Article  CAS  Google Scholar 

  • Macher J., Ammann H. A., Burge H. A., Milton D. K., & Morey P. R. (1998). Bioaerosols: Assessment and control, American Conference of Governmental Industrial Hygienists, Cincinnati, OH, Cincinnati, USA.

  • Maier, R. M., Pepper, I. L., & Gerba, C. P. (2000). Environmental microbiology. San Diego, California: Academic Press.

    Google Scholar 

  • Maron, P.-A., Lejon, D. P. H., Calvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment, 39, 3687–3695.

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2012). Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Frontiers in Microbiology, 2, 265. doi:10.3389/fmicb.2011.00265.

    Article  Google Scholar 

  • Matthais-Maser, S., Obolkin, V., Khodzer, T., & Jaenicke, R. (2000). Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmospheric Environment, 34, 3805–3811.

    Article  Google Scholar 

  • Meretrez, M. Y., Foarde, K. K., Esch, R. K., Schwartz, T. D., Dean, T. R., Hays, M. D., et al. (2009). An evaluation of indoor and outdoor biological particulate matter. Atmospheric Environment, 43, 5476–5483.

    Article  Google Scholar 

  • Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., et al. (2011). Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 17–25.

    Article  CAS  Google Scholar 

  • Oliveira, M., Ribeirio, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53, 61–73.

    Article  CAS  Google Scholar 

  • Parat, S., Perdrix, A., Mann, S., & Baconnier, P. (1999). Contribution of particle counting in assessment of exposure to airborne microorganisms. Atmospheric Environment, 33, 951–959.

    Article  CAS  Google Scholar 

  • Pascual, L., Perez-Luz, S., Adela Yanez, M., Santamaria, A., Gibert, K., Salgot, M., et al. (2003). Bioaerosol emission from wastewater treatment plants. Aerobiologia, 19, 261–270.

    Article  Google Scholar 

  • Patrikis, N., Lazaridis, M., & Katsivela, E. (2009). Antibiotic-resistant airborne microbial concentrations and particulate matter indoor/outdoor levels. In e-Proceedings of the 11th International Conference on Environmental Science and Technology (CEST2009) (pp. 725–729). Chania, Crete, Greece, September 3rd–5th, 2009.

  • Perez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., et al. (2010). Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: Influence of road traffic emissions on urban air quality. Aerosol Science and Technology, 44, 487–499.

    Article  CAS  Google Scholar 

  • Pey, J., Rodriguez, S., Querol, X., Alastuey, A., Moreno, T., Puatud, J. P., et al. (2008). Variations of urban aerosols in the western Mediterranean. Atmospheric Environment, 42, 9052–9062.

    Article  CAS  Google Scholar 

  • Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense african dust event in the eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.

    Article  Google Scholar 

  • Pyrri, I., & Kapsanaki-Gotsi, E. (2011). Diversity and annual fluctuations of cultivable airborne fungi in Athens, Greece: A 4-year study. Aerobiologia. doi:10.1007/s10451-011-9233-z.

  • Raisi, L., Lazaridis, M., & Katsivela, E. (2010). Relationship between airborne microbial and particulate matter concentrations in the ambient air at a Mediterranean site. Global Nest Journal, 12(1), 84–91.

    Google Scholar 

  • Ranalli, G., Principi, P., & Sorlini, C. (2000). Bacterial aerosol emission from wastewater treatment plants: Culture methods and biomolecular tools. Aerobiologia, 16, 39–46.

    Article  Google Scholar 

  • Rappé, M. S., & Giovannoni, S. J. (2003). The uncultured microbial majority. Annual Reviews of Microbiology, 57, 369–394.

    Article  Google Scholar 

  • Rolph, G.D. (2003). Real-time environmental applications and display system (READY). Website NOAA air resources laboratory, Silver Spring, MD. Retrieved from http://www.arl.noaa.gov/ready/hysplit4.html. Accessed 20 Nov 2011.

  • Schlesinger, P., Mamame, Y., & Grishkan, I. (2006). Transport of microorganisms to Israel during Saharan dust events. Aerobiologia, 22, 259–273.

    Article  Google Scholar 

  • Schütz L., Jaenicke R., & Pietreck H. (1981). Sahara dust transport over the North Atlantic Ocean. In T. L. Pèwè (Ed.), Desert dust, Vol. 187 Geological Society of America, pp. 87–100.

  • Shaffer, B. T., & Lighthart, B. (1997). Survey of the cultivable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest and coastal. Microbial Ecology, 34, 167–177.

    Article  Google Scholar 

  • Stelzenbach, L. D. (2007). Introduction to aerobiology. In C. J. Hurst, et al. (Eds.), Manual of environmental microbiology (pp. 925–938). Washington, DC: ASM Press.

    Google Scholar 

  • Tong, Y., & Lighthart, B. (2000). The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science and Technology, 32, 393–403.

    Article  CAS  Google Scholar 

  • Urbano, R., Palenik, B., Gaston, C. J., & Prather, K. A. (2011). Detection and phylogenetic analysis of coastal bioaerosols using culture depended and independent techniques. Biogeosciences, 8, 301–309.

    Article  CAS  Google Scholar 

  • USEPA. (2004). Air quality criteria for particulate matter. Research Triangle Park, NC. EPA/600/P-99/002aD.

  • Winiwarter, W., Bauer, H., Caseiro, A., & Puxbaum, H. (2009). Quantifying emissions of primary biological aerosol particle mass in Europe. Atmospheric Environment, 43, 1403–1409.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model (http://www.arl.noaa.gov/ready.html) used in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Katsivela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raisi, L., Aleksandropoulou, V., Lazaridis, M. et al. Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia 29, 233–248 (2013). https://doi.org/10.1007/s10453-012-9276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9276-9

Keywords

Navigation