Skip to main content
Log in

Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German–Austrian border

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Flowering behavior of the major allergenic species Betula pendula Roth (silver birch), Dactylis glomerata L. (cocksfoot) and Alopecurus pratensis L. (meadow foxtail), was examined by phenological observations in 2009 along an altitudinal gradient (from 700 m up to 1,700 m a.s.l.) in the topographically complex Zugspitze area on the German–Austrian border. The results were compared with pollen counts derived from pollen traps located at different altitudes (720 m, 1,503 m, 2,650 m a.s.l.). Phenological onset dates showed a great dependence on altitude and on exposition. Altitudinal gradients of the two grass species showed a delay of between 6 and 7 days (100 m)−1 and can be interpreted as a temperature response rate varying between −9 and −10 days (1 °C)−1. For birch phenophases, the altitudinal gradients were ca. 3 days (100 m)−1, corresponding to temperature response rates of circa −7 days (1 °C)−1. Northern and western exposed birch trees at the same altitude showed large differences in flowering dates (5–7 days). A comparison of phenological and aerobiological data in the phenological survey area revealed good agreement in the start of season dates, especially at lower altitude. Therefore, it was local pollen emissions, not long- or medium-range pollen transport that accounted for the timing of the aerobiological start of the season. Pollen counts at the highest and vegetation-free site were particularly affected by medium-range transport. More pronounced responses to altitude and therefore to temperature for the analyzed grass species indicate a greater temperature sensitivity. This suggests that further temperature increase could result in a remarkably earlier grass pollen season and, in turn, lead to major consequences for human health. Particular wind patterns can contribute to high and medically relevant pollen concentrations even at high elevation sites, implying less favourable conditions for those people allergic to pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., et al. (2004). Responses of spring phenology to climate change. New Phytologist, 162, 295–309.

    Article  Google Scholar 

  • Barry, R. G. (1981). Mountain weather and climate. London and New York: Methuen.

    Google Scholar 

  • Beniston, M. (2006). Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 3–16.

    Article  Google Scholar 

  • Bortenschlager, S., & Bortenschlager, I. (2005). Altering airborne pollen concentrations due to the global warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001. Grana, 44(3), 172–180.

    Article  Google Scholar 

  • Bruns, E. (2009). Das erste Halbjahr 2009 klimatologisch-phänologisch betrachtet. Phänologische Betrachtungen vom Deutschen Wetterdienst. Offenbach am Main: Deutscher Wetterdienst, pp. 1–2.

  • Cambon, G., Ritchie, J. C., & Guinet, P. (1992). Long-distance transport of airborne pollen in Southern Ontario (Canada). Canadian Journal of Botany, 70, 2284–2293.

    Article  Google Scholar 

  • Campbell, I. D., McDonald, K., Flannigan, M. D., & Kringayark, J. (1999). Long-distance transport of pollen into the Arctic. Nature, 399, 29–30.

    Article  CAS  Google Scholar 

  • Cecchi, L., Torrigiani Malaspina, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., et al. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23, 145–151.

    Article  Google Scholar 

  • Chen, X. (1994). Untersuchung zur zeitlich-räumlichen Ähnlichkeit von phänologischen und klimatologischen Parametern in Westdeutschland und zum Einfluss geoökologischer Faktoren auf die phänologische Entwicklung im Gebiet des Taunus (pp. 74–77). Offenbach am Main: Deutscher Wetterdienst.

    Google Scholar 

  • Clot, B., Peeters, A. G., Fankhauser, A., & Frei, T. (1995). Airborne pollen in Switzerland 1994. Zürich: Schweizerische Meteorologische Anstalt.

    Google Scholar 

  • Cornelius, C., Petermeier, H., Estrella, N., & Menzel, A. (2011). A comparison of methods to estimate seasonal phenological development from BBCH scale recording. International Journal of Biometeorology, 55, 867–877.

    Article  Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.

    Article  Google Scholar 

  • Defila, C. (2007). Alpine Pflanzenphänologie in der Schweiz. Promet, 33, 36–39.

    Google Scholar 

  • Defila, C., & Clot, B. (2005). Phytophenological trends in the Swiss Alps, 1951–2002. Meteorologische Zeitschrift, 14, 191–196.

    Article  Google Scholar 

  • DWD (Deutscher Wetterdienst). (1991). Anleitung für die phänologischen Beobachter des Deutschen Wetterdienstes. Offenbach am Main: Deutscher Wetterdienst.

    Google Scholar 

  • Ellenberg, H. (1996). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht (5th ed.). Stuttgart: Ulmer.

    Google Scholar 

  • Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: Analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51, 49–59.

    Article  Google Scholar 

  • Frei, T. (1997). Pollen distribution at high elevation in Switzerland: Evidence for medium range transport. Grana, 36, 34–38.

    Article  Google Scholar 

  • Galán, C., Cariñanos, P., Garcia-Mozo, H., Alcázar, P., & Domínguez-Vilches, E. (2001). Model for forecasting Olea europaea L. Airborne pollen in South-West Andalusia, Spain. International Journal of Biometeorology, 45, 59–63.

    Article  Google Scholar 

  • Galán, C., Emberlin, J., Dominguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Cordoba, Spain and London, UK. Grana, 34, 189–198.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Jäger, S. (2008). Exposure to grass pollen in Europe. Clinical and Experimental Allergy Reviews, 8, 2–6.

    Article  Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2006). Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org.

  • Jato, V., Rodriguez-Rajo, F. J., Alcazar, P., De Nuntiis, P., Galán, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia, 22, 13–25.

    Article  Google Scholar 

  • Jochner, S., Beck, I., Behrendt, H., Traidl-Hoffmann, C., & Menzel, A. (2011a). Effects of extreme spring temperatures on urban phenology and pollen production: A case study in Munich and Ingolstadt. Climate Research, 49, 101–112.

    Article  Google Scholar 

  • Jochner, S., Heckmann, T., Becht, M., & Menzel, A. (2011b). The integration of plant phenology and land use data to create a GIS-assisted bioclimatic characterisation of Bavaria, Germany. Plant Ecology and Diversity, 4, 91–101.

    Article  Google Scholar 

  • Laaidi, M. (2001). Forecasting the start of the pollen season of Poaceae: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45, 1–7.

    Article  CAS  Google Scholar 

  • Laaidi, M., Thibaudon, M., & Besancenot, J.-P. (2003). Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). International Journal of Biometeorology, 48, 65–73.

    Article  Google Scholar 

  • Meier, U. (2001). Entwicklungsstadien mono- und dikotyler Pflanzen. BBCH-Monographie (2nd ed.). Berlin: Blackwell Wissenschaftsverlag.

    Google Scholar 

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659.

    Article  CAS  Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.

    Article  Google Scholar 

  • Rantio-Lehtimäki, A. (1994). Short, medium and long range transported airborne particles in viability and antigenicity analyses. Aerobiologia, 10, 175–181.

    Article  Google Scholar 

  • Rapiejko, P. (1995). Pollen monitoring in Poland. In R. Spiewak (Ed.), Pollen and pollinosis: Current problems. Lublin: Institute of Agricultural Medicine.

    Google Scholar 

  • Rötzer, T., & Chmielewski, F. M. (2001). Phenological maps of Europe. Climate Research, 18, 249–257.

    Article  Google Scholar 

  • Rousseau, D. D., Duzer, D., Cambon, G. V., Jolly, D., Poulsen, U., Ferrier, J., et al. (2003). Long distance transport of pollen to Greenland. Geophysical Research Letters, 30. doi:10.1029/2003GL017539.

  • Sánchez Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galán, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.

    Article  Google Scholar 

  • Scheid, G., & Bergmann, K.-Ch. (2004). 20 Jahre Stiftung Deutscher Polleninformationsdienst (1983–2003). Allergo Journal, 13, 261–268.

    Google Scholar 

  • Scherrer, D., Schmid, S., & Körner, C. (2011). Elevational species shift in a warmer climate are observed when based on weather station data. International Journal of Biometeorology, 55, 645–654.

    Article  Google Scholar 

  • Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35, 1400–1406.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.

    Article  CAS  Google Scholar 

  • Spieksma, F. T. M. (1980). Daily hay fever forecast in the Netherlands. Radio broadcasting of the expected influence of the weather on subjective complaints of hay fever sufferers. Allergy, 35, 593–603.

    Article  CAS  Google Scholar 

  • Van de Water, P. K., Keever, T., Main, C. E., & Levetin, E. (2003). An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA. International Journal of Biometeorology, 48, 74–82.

    Article  Google Scholar 

  • Vázquez, L. M., Galán, C., & Domínguez-Vilches, E. (2003). Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). International Journal of Biometeorology, 48, 83–90.

    Article  Google Scholar 

  • Zacharias, F. (1972). Blühphaseneintritte an Straßenbäumen (insbesondere Tilia x euchlora KOCH) und Temperaturverteilung in Westberlin, PhD thesis. Berlin: Freie Universität Berlin.

  • Zauli, D., Tiberio, D., Grassi, A., & Ballardini, G. (2006). Ragweed pollen travels long distance. Annals of Allergy, Asthma & Immunology, 97, 122–123.

    Article  Google Scholar 

  • Ziello, C., Estrella, N., Kostova, M., Koch, E., & Menzel, A. (2009). Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Climate Research, 39, 227–234.

    Article  Google Scholar 

Download references

Acknowledgments

The research conducted in this study was supported by grant U 119 (Impacts of climate on pollen season and distribution in the Alpine region) of the Bavarian State Ministry of the Environment and Public Health (StMUG). S.J. and C.Z. gratefully acknowledge the support of the TUM Graduate School’s Faculty Graduate Center Weihenstephan at the Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Jochner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jochner, S., Ziello, C., Böck, A. et al. Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German–Austrian border. Aerobiologia 28, 541–556 (2012). https://doi.org/10.1007/s10453-012-9255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-012-9255-1

Keywords

Navigation