, Volume 28, Issue 4, pp 435–451 | Cite as

Ambrosia L. in Catalonia (NE Spain): expansion and aerobiology of a new bioinvader

  • Álvaro Fernández-LlamazaresEmail author
  • Jordina Belmonte
  • Marta Alarcón
  • Mirna López-Pacheco
Original Paper


This paper aims to determine the stage of the naturalization of ragweed (Ambrosia L.) in Catalonia, north-east Spain, and to analyze the airborne pollen pattern and provenance, in order to contribute to a better management of it and prevent the expansion of a possible new bioinvader that can also become a health problem due to its highly allergenic pollen. Biogeographical sampling consisted on the monitoring of Ambrosia populations through the territory over a 2-year period (2010–2011). Aerobiological sampling was based on the analysis of pollen records at eight aerobiological sampling stations, during the period 1994–2010. Pollen provenance sampling was examined using backward atmospheric air masses trajectories and synoptic maps, as well as through the application of a source-receptor model. Ambrosia colonies are expanding throughout the territory at a mean growing rate of 324% for the sampled territory. The Annual Pollen Indices appear to be clearly influenced by the pollen concentrations in the peak dates, and these are linked to long-range transport of pollen from regions where Ambrosia is widely widespread, such as eastern France, northern Italy and Hungary and Serbia. The episodes of pollen transport are increasing in number. Although airborne Ambrosia pollen type is not showing any clear increasing trend for the period under study, local populations of the plant could be having an influence on the pollen records, since the genus is clearly expanding in the territory at considerably high spread rates. Ambrosia populations have to be surveyed both for public health reasons and as a new bioinvader.


Airborne pollen Allergy Ambrosia Invasive weed Long-range transport Ragweed 



The authors wish to thank to different projects that contributed to the financing of obtaining data used in this study: from the European Commission for COST ES0603 EUPOL and “ENV4-CT98-0755”; from the Spanish Ministry of Science and Technology I + D + I for “AMB97-0457-CO7-021,” “REN2001-10659-CO3-01,” “CGL2004-21166-E,” “CGL2005-07543/CLI,” “CGL2009-11205” and CONSOLIDER CSD 2007_00067 GRACCIE; and from the Catalan Government AGAUR for “2002SGR00059,” “2005SGR00519” and “2009SGR1102”; as well as to the entities Laboratorios LETI S.A.; Servei Meteorològic de Catalunya; Diputació de Barcelona and DIPSALUT. We also thank our colleagues Concepción De Linares, Sara Fraixedas and and Rebeca Izquierdo for help in manuscript preparation, and Albert Bach and Dr. Carlos Fernández-Llamazares for technical support during the field work.

Supplementary material

10453_2012_9247_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Allard, H. A. (1943). The North American ragweeds and their occurrence in other parts of the world. Science, 98, 292–293.CrossRefGoogle Scholar
  2. Amor, A., Navarro, F., Sánchez, M. A., & Valle, C. J. (2006). Ambrosia artemisiifolia L. en la provincia Mediterránea Ibérica occidental. Studia Botanica Universidad Salamanca, 25, 133–136.Google Scholar
  3. Anthos. (2011). Sistema de información de las plantas de España. Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC)—Fundación Biodiversidad. Accessed 4 March 2011.
  4. Aparicio, J. M., Elorza, J., Patino, S., Uribe, P. M., Urrutia, P., & Valencia, J. (1997). Notas corológicas sobre la flora vascular del Paí-s Vasco y aledaños (VIII). Estudios del Museo de Ciencias Naturales de Álava, 12, 89–105.Google Scholar
  5. Aparicio, J. M., Patino, S., Pérez, T., Uribe, P. M., Urrutia, P., & Valencia, J. (1993). Notas corológicas sobre la flora vascular del País Vasco y aledaños (VII). Estudios del Museo de Ciencias Naturales de Álava, 8, 85–99.Google Scholar
  6. Asero, R. (2002). Birch and ragweed pollinosis north of Milan: A model to investigate the effects of exposure to “new” airborne allergens. Allergy. doi: 10.1034/j.1398-9995.2002.23766.x.
  7. Barnola, P., & Romo, A. M. (1989). Addicions a la flora vascular del Montseny, II Trobada d’Estudiosos del Montseny. Monografies de la Diputació de Barcelona, 18, 107–108.Google Scholar
  8. Bassett, I. J., & Crompton, C. W. (1975). The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Canadian Journal of Plant Science, 55, 463–476.CrossRefGoogle Scholar
  9. Bassett, I. J., & Terasmae, J. (1962). Ragweeds, Ambrosia species, in Canada and their history in postglacial times. Canadian Journal of Botany, 40, 141–150.CrossRefGoogle Scholar
  10. Belmonte, J., Alarcón, M., Ávila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology. doi: 10.1007/s00484-008-0160-9.
  11. Belmonte, J., Vendrell, M., Roure, J. M., Vidal, J., Botey, J., & Cadahía, A. (2000). Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia, 16, 93–99.CrossRefGoogle Scholar
  12. Belmonte, J., & Vilà, M. (2004). Atmospheric invasion of non-native pollen in the Mediterranean region. American Journal of Botany, 91(8), 1243–1250.CrossRefGoogle Scholar
  13. Benedí, C., & Molero, J. (1988). Exsiccata selecta florae ibericae boreo-orientalis et balearicae. Fontqueria, 16, 1–14.Google Scholar
  14. Boada, M., Maneja, R., Miralles, M., Varga, D., et al. (2009). Informe de seguiment de l’estat socioecològic de la Conca de la Tordera. Barcelona, Spain: Observari de la Tordera.Google Scholar
  15. Bolòs, O. (1998). Atlas Corològic. Volum Extraordinari: Primera compilació general. Vol. I, II. Barcelona, Spain: Organització per a la Cartografia de les Plantes als Països Catalans (ORCA).Google Scholar
  16. Bolòs, O., & Bolòs, A. (1961). Observacions florístiques. Miscel lània fontserè, 1, 83–102.Google Scholar
  17. Bolòs, O., & Vigo, J. (1995). Flora dels Països Catalans (Vol. III). Barcelona, Spain: Barcino.Google Scholar
  18. Borja, J. (1951). Estudio fitográfico de la Sierra de Corbera (Valencia). Anales del Jardín Botánico de Madrid, 9, 361–483.Google Scholar
  19. Brandes, D., & Nitzsche, J. (2007). Verbreitung, Ökologie und Soziologie von Ambrosia artemisiifolia L. in Mitteleuropa. Tuexenia, 27, 167–194.Google Scholar
  20. Buttenschøn, R., Waldispühl, S., & Bohren, C. (2009). Guidelines for management of common ragweed, Ambrosia artemisiifolia. Faculty of Life Sciences, University of Copenhagen. Accessed 2 February 2011.
  21. Carretero, J. L. (1990). Aportaciones a la flora exótica española. Folia Botanica Miscellanea, 7, 55–58.Google Scholar
  22. Casasayas, T. (1989). La flora al lòctona de Catalunya. Catàleg raonat de les plantes vasculars exòtiques que creixen sense cultiu al NE de la Península Ibèrica. Thesis from the Universitat de Barcelona, Barcelona, Spain.Google Scholar
  23. Cecchi, L., Torrigiani, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., Morabito, M., Dall’Aglio, P., & Orlandini, S. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia. doi: 10.1007/s10453-007-9060-4.
  24. Comtois, P. (1998). Ragweed (Ambrosia sp.): The Phoenix of allergophytes. In F. T. M. Spieksma (Ed.), Ragweed in Europe. The 6th International congress on aerobiology, Satellite Symposium Proc., Perugia, Italy, pp. 3–5.Google Scholar
  25. Confalonieri, U., Menne, B., Akhtar, R., Ebi, K. L., Hauengue, M., Kovats, R. S., Revich, B., & Woodward, A. (2007). Human health. In: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (IPCC) of the United Nations (pp. 391–431). UK: Cambridge University Press.Google Scholar
  26. Cour, P. (1974). Nouvelles techniques de détection des flux et des retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores, 16(1), 103–141.Google Scholar
  27. Cvitanovic, S., Znaor, L., Perisic, D., & Grbic, D. (2004). Hypersensitivity to pollen allergens on Adriatic Coast. Arhiv za Higijenu Rada, I Toksikologiyu, 34, 147–154.Google Scholar
  28. D’Amato, G., Spieksma, F. T. H., & Liccardi, G. (1998). Pollen related allergy in Europe. Allergy, 53, 567–578.CrossRefGoogle Scholar
  29. Dahl, Ǻ., Strandhede, S. O., & Wihl, J. Ǻ. (1999). Ragweed—an allergy risk in Sweden? Aerobiologia, 15, 293–297.CrossRefGoogle Scholar
  30. Dana, E. D., Sanz-Elorza, M., & Sobrino, E. (2003). Plant invaders in Spain (Check-list). The Unwanted Citizens Web. Accessed 13 June 2010.
  31. De Roa, E., Albaladejo, M. J., Santaeufemia, X., & Úrios, N. (2009). Memòria de gestió 2009. El Prat del Llobregat, Barcelona, Spain: Consorci per a la Protecció i la Gestió dels Espais Naturals del Delta del Llobregat.Google Scholar
  32. Déchamp, C. (1992). Climat et pathologie due à l’ambroisie, Risques pathologiques. In J. P. Besancenot (Ed.), Risques pathologiques, rythmes et paroxysmes climatiques (pp. 177–184). Paris, France: John Libbey Eurotext.Google Scholar
  33. Déchamp, C. (1995). L’ambroisie, un nouveau fléau. Ahum, France: Verso.Google Scholar
  34. Déchamp, C., & Cour, P. (1987). Pollen counts of ragweed and mugwort (Cour collector) in 1984 measured at 12 meteorological centers in the Rhône basin and surrounding regions. In: G. Boehm, R. M. Leuschner (Eds.), Advances in aerobiology. Proceedings of the 3rd International conference on aerobiology. Experientia Suppl (Basel), vol. 51, pp. 119–124.Google Scholar
  35. Déchamp, C., & Riotte-Flandrois, F. (1995). La nouvelle législation de la Politique Agricole Commune actualisée en 1994 et son retentissement sur la diffusion de l’Ambrosia. Allergie et Immunologie, 27, 345–349.Google Scholar
  36. Del Hoyo, R., & González, V. (2001). Anàlisi de l’estat de la vegetació i catàleg florístic del paratge de la Pineda de Cal Francès i la seva zona litoral. SpartinaButlletí Naturalista del delta del Llobregat, 4, 1–28.Google Scholar
  37. Devis, J. (2009). Noves aportacions a la flora del Parc Fluvial del Besòs. Butlletí del Centre d’Estudis de la Natura del Barcelonès Nord, 8(1), 15–58.Google Scholar
  38. Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website. NOOAA Air Resources Laboratory, Silver Spring,
  39. Euro + Med. (2011). Euro + Med PlantBase—the information resource for Euro-Mediterranean plant diversity. European Science Foundation European Documentation System (ESFED). Accessed 5 March 2011.
  40. Folch, R. (1976). Notes floristiques, III. Quelques espèces nouvelles ou intéressantes de la zone littorale de la Catalogne méridionale. Collectanea Botanica (Barcelona), 10, 181–190.Google Scholar
  41. Folch, R. (1979). El poblament vegetal de les comarques litorals compreses entre el coll d’Alforja i l’Ebre (p. 60). Barcelona, Spain: Arxius de la secció de Ciències de l’Institut d’Estudis Catalans.Google Scholar
  42. Font, X. (2011). Mòdul Flora i Vegetació. Banc de Dades de Biodiversitat de Catalunya (BDBC) Generalitat de Catalunya i Universitat de Barcelona. Accessed 5 March 2011.
  43. Fraga, P., & García, O. (2004). Notes i contribucions al coneixement de la flora de Menorca (IV). Bolletí de la Societat d’Història Natural de Les Balears, 47, 143–152.Google Scholar
  44. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Manual de Calidad y Gestión de la Red Española de Aerobiología. Córdoba, Spain: Servicio de Publicaciones de la Universidad de Córdoba.Google Scholar
  45. García, X. M. (1985). Algunas aportaciones a la flora gallega. Anales del Jardín Botánico de Madrid, 42(1), 191–196.Google Scholar
  46. Ghosh, B., Rafnar, T., Perry, M. P., Bassolino-Klimas, D., Metzler, W. J., Klapper, D. G., et al. (1994). Immunologic and molecular characterization of Amb p V allergens from Ambrosia psilostachya (Western Ragweed) pollen. Journal of Immunology, 152, 2882–2889.Google Scholar
  47. Hegi, G. (1908). Illustrierte Flora von Mitteleuropa: mit besonderer Berücksichtigung von Deutschland, Österreich und der Schweiz. München, Germany: Lehmann.Google Scholar
  48. Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  49. Jäger, S. (1998). Global aspects of ragweed in Europe. In F. T. H. Spieksma (Ed.), Ragweed in Europe. The 6th International Congress on Aerobiology, Satellite Symp. Proc., Perugia, Italy, pp. 6–8.Google Scholar
  50. Jäger, S., & Litschauer, R. (1998). Ragweed (Ambrosia) in Austria. In F. T. H. Spieksma (Ed.), Ragweed in Europe. The 6th International Congress on aerobiology, Satellite Symp. Proc., Perugia, Italy, pp. 22–26.Google Scholar
  51. Jarai-Komlodi, M., & Juhász, M. (1993). Ambrosia elatior (L.) in Hungary (1989–1990). Aerobiologia, 9, 75–78.CrossRefGoogle Scholar
  52. Juhász, M. (1995). New results of aeropalynological research in Southern Hungary. Hungarian Academy of Science, Regional Commitee (Szeged) Publication, 5, 17–30.Google Scholar
  53. Juhász, M., Juhász, I., Gallovich, R., Radisic, P., Ianovici, N., Peternel, R., & Kofol-Seliger, A. (2004). Last years ragweed pollen concentrations in the Southern part of Carphatian Basin. In: Proceedings: 11th symposium on analytical and environmental problems, Szeged, Hungary.Google Scholar
  54. Kapp, R. O. (1969). Pollen and spores. Dubuque, IA, US: W.M.C. Brown Company Publishers.Google Scholar
  55. Kasprzyk, I., Myszkowska, D., Grewling, Ł., Stach, A., Šikoparija, B., Skjøth, C. A., et al. (2011). The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznán, Poland: Investigation of trends and possible transport of Ambrosia pollen from Ukraine. International Journal of Biometeorology, 55, 633–644. doi: 10.1007/s00484-010-0376-3.CrossRefGoogle Scholar
  56. Křivánek, M., & Pyšek, P. (2006). Predicting invasions by woody species in a temperate zone: A test of three risk assessment schemes in the Czech Republic (Central Europe). Diversity and Distributions. doi: 10.1111/j.1366-9516.2006.00249.x.
  57. Laaidi, K., & Laaidi, M. (1999). Airborne pollen of Ambrosia in Burgundy (France) 1996–1997. Aerobiologia, 15, 65–69.CrossRefGoogle Scholar
  58. Laaidi, M., Laaidi, K., Besancenot, J. P., & Thibaudon, M. (2003). Ragweed in France: An invasive plant and its allergenic pollen. Annals of Allergy, Asthma & Immunology, 91(2), 195–201.CrossRefGoogle Scholar
  59. Laínz, M., & Loriente, E. (1983). Contribuciones al conocimiento de la flora montañesa, II. Anales del Jardín Botánico de Madrid, 39(2), 405–416.Google Scholar
  60. Mabberley, D. J. (1987). The plant-book: A portable dictionary of the higher plants. New York, USA: Press Syndicate of the University of Cambridge.Google Scholar
  61. Makra, L., Juhász, M., Béczi, R., & Borsos, E. (2005). The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana. doi: 10.1080/00173130510010558.
  62. Mandrioli, P., Di Cecco, M., & Andina, G. (1998). Ragweed pollen: The aeroallergen is spreading in Italy. Aerobiologia, 14, 13–20.CrossRefGoogle Scholar
  63. Masalles, R. M., Sans, F. X., Pino, J., & Chamorro, L. (1996). Aportacions al coneixement de la flora sinantròpica catalana. Folia Botanica Miscellanea, 10, 77–84.Google Scholar
  64. Montserrat, P. (1954). La Ambrosia tenuifolia Sprengel en España. Collectanea Botanica (Barcelona), 4, 311–313.Google Scholar
  65. Montserrat, P. (1962). Flora de la cordillera litoral catalana (porción comprendida entre los ríos Besòs y Tordera) Continuación. Collectanea Botanica (Barcelona), 6, 1–48.Google Scholar
  66. Panareda, J. M., Romo, A., & Pintó, J. (2001). Factors en la distribució de les plantes vasculars al llit de la Tordera.; III Trobada d’Estudiosos del Montnegre i el Corredor. Monografies de la Diputació de Barcelona, 32, 111–118.Google Scholar
  67. Patino, S., & Valencia, J. (2000). Notas corológicas sobre la flora vascular del Paí-s Vasco y aledaños (IX). Estudios del Museo de Ciencias Naturales de Álava, 15, 221–238.Google Scholar
  68. Peeters, A. G. (2000). Ambrosia sp. pollen in Switzerland. Aerobiologia, 16, 295–297.CrossRefGoogle Scholar
  69. Pérez, J. M. (1887). Florula gaditana. Pars secunda. Anales de la Sociedad Española de Historia Natural, 16(2), 273–372.Google Scholar
  70. Pérez, J. M. (1891). Adiciones a la Florula gaditana. Anales de la Sociedad Española de Historia Natural, 20(1), 2–3.Google Scholar
  71. Peternel, R., Čulig, J., Srnec, L., Mitić, B., Vukušić, I., & Hrga, I. (2005). Variation in ragweed (Ambrosia artemisiifolia L.) concentration in central Croatia, 2002–2003. Annals of Agricultural and Environmental Medicine, 12, 11–16.Google Scholar
  72. Pino, J., & De Roa, E. (1998). Comparació de l’estructura i la composició florística de la vegetació de dues platges del Prat de Llobregat. Spartina, 3, 33–46.Google Scholar
  73. Rejmánek, M., Richardson, D. M., & Pyšek, P. (2005). Plant invasions and invasibility of plant communities. In E. van der Maarel (Ed.), Vegetation ecology (pp. 332–355). Oxford, UK: Blackwell.Google Scholar
  74. Riba, C. (2004). Plantes noves per a la flora de Vilanova del Camí. Barcelona, Spain: Àrea de Medi Ambient, Ajuntament de Vilanova del Camí.Google Scholar
  75. Rico, E. (1981). Notas corológicas. Anales del Jardín Botánico de Madrid, 38(1), 307–309.Google Scholar
  76. Rogers, B. L., Bond, J. F., Morgenstern, J. P., Counsell, C. M., & Griffith, I. J. (1996). Immunological characterization of the major ragweed allergens Amb a I and Amb a II. In S. S. Mohaprat & R. B. Knox (Eds.), Pollen biotechnology: Gene expression and allergen characterization (pp. 221–225). New York, USA: Chapman & Hall.Google Scholar
  77. Rybnícek, O., & Jäger, S. (2001). Ambrosia (ragweed) in Europe. Allergy Clinical Immunology International, 13, 60–66.CrossRefGoogle Scholar
  78. Saar, M., Gudžiskas, Z., Ploompuu, T., Linno, E., Minkienė, Z., & Motiekaitytė, V. (2000). Ragweed plants and airborne pollen in the Baltic states. Aerobiologia, 16, 101–106.CrossRefGoogle Scholar
  79. Salvà, M. (2000). Anàlisi de les plantes i de la fauna vertebrada a la vall de Fuirosos (Montnegre, serralada litoral catalana). Thesis from the Universitat de Barcelona, Barcelona, Spain.Google Scholar
  80. Segura, A. (1982). De flora soriana y otras notas botánicas (II), in Homenaje almeriense al botánico Rufino Sagredo. Almería, Spain: Instituto de Estudios Almerienses.Google Scholar
  81. Seibert, P., Kromp-Kolb, H., Balterpensger, U., Jost, D. T., Schwikowski, M., Kasper, A., et al. (1994). Trajectory analysis of aerosol measurements at high alpine sites. In P. Borrell, T. Cvitas, & W. Seiler (Eds.), Transport and transformation of pollutants in the troposphere (pp. 689–693). The Hague, The Netherlands: Academic.Google Scholar
  82. Šikoparija, B., Radišić, P., Pejak, T., & Šimić, S. (2006). Airborne grass and ragweed pollen in the southern Panonnian Valley—consideration of rural and urban environment. Annals Agriculture Environment Medicine, 13, 263–266.Google Scholar
  83. Šikoparija, B., Smith, M., Skjøth, C. A., Radišić, P., Milkovska, S., Šimić, S., et al. (2009). The Pannoian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology, 53, 263–272.CrossRefGoogle Scholar
  84. Siljamo, P., Sofiev, M., & Ranta, H. (2007). An approach to simulation of long-range atmospheric transport of natural allergens: An example of birch pollen. In C. Borrego & A.-L. Norman (Eds.), Air pollution modeling and its applications (Vol. XVII, pp. 331–339). Boston, USA: Springer.Google Scholar
  85. Skjøth, C. A., Smith, M., Brandt, J., & Emberlin, J. (2008). Are the birch trees in Southern England a source of Betula pollen for North London? International Journal of Biometeorology, 53, 75–86.CrossRefGoogle Scholar
  86. Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., Radišic, P., Stjepanović, B., Hrga, I., Apatini, D., Magyar, D., Páldy, A., & Ianovici, N. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology. doi: 10.1016/j.agrformet.2010.05.002.
  87. Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411.CrossRefGoogle Scholar
  88. Solomon, W. R., & Durham, O. C. (1967). Pollen and plants that produce them. In J. M. Sheldom, R. G. Lovell & K. P. Matews (Eds.), An annual of clinical allergy. Philadelphia, USA: W.B. Sauders Co.Google Scholar
  89. Stach, A. (2006). Is the pollen of ragweed (Ambrosia spp.) a threat to people with allergies in the Wielkopolska region? Biodiversity: Research and Conservation, 3–4, 320–323.Google Scholar
  90. Stach, A., Smith, M., Skjøth, C. A., & Brandt, J. (2007). Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. International Journal of Biometeorology, 51, 275–286.CrossRefGoogle Scholar
  91. Stohl, A., & Seibert, P. (1997). Accuracy of trajectories as determined from the conservation of meteorological tracers. Quarterly Journal of the Royal Meteorological Society, 124, 1465–1484.CrossRefGoogle Scholar
  92. Taramarcaz, P., Lambelet, C., Clot, B., Keimer, C., & Hauser, C. (2005). Ragweed (Ambrosia) progression and its health risks: Will Switzerland resist this invasion? Swiss Medical Weekly, 135, 538–548.Google Scholar
  93. Thibaudon, M. (2002). Threshold of allergenic risk for the pollinic information in France. In PAAA (Ed.), The 7th International Congress on Aerobiology, Montebello, Canada (
  94. Trigo, M., & García-Sánchez, J. (2006). Ambrosia artemisiifolia L., nueva especie para la flora alóctona invasora de Andalucía (España). Acta Botanica Malacitana, 31, 203–205.Google Scholar
  95. Vallès, J., & Poch, J. (1999). Notes sobre algunes plantes al lòctones a les comarques gironines (Catalunya). Butlletí de l’Institut Català d’Història Natural, 67, 62–65.Google Scholar
  96. Vayreda, E. (1901). Notas geográfico-botánicas. Anales de la Sociedad Españolas de Historia Natural, 29(3), 363–384.Google Scholar
  97. Voltolini, S., Minale, P., Troise, C., Bignardi, D., Modena, P., Arobba, D., et al. (2000). Trend of herbaceous pollen diffusion and allergic sensitisation in Genoa, Italy. Aerobiologia, 16, 245–249.CrossRefGoogle Scholar
  98. Wayne, P., Foster, S., Conolly, J., Bazzaz, F., & Epstein, P. (2002). Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy Asthma Immunology. doi: 10.1016/S1081-1206(10)62009-1.
  99. Wodehouse, R. P. (1971). Hayfever plants (2nd ed.). New York, USA: Hafner Publ. Co.Google Scholar
  100. Yman, L. (1982). Botanical relations and immunological cross-reactions in pollen allergy. Upssala, Sweden: Pharmacia Diagnostics AB.Google Scholar
  101. Ziska, L. H., & Caulfield, F. (2000). The potential influence of rising atmospheric carbon dioxide (CO2) on public health: Pollen production of common ragweed as a test case. World Resource Review, 12, 449–457.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Álvaro Fernández-Llamazares
    • 1
    • 2
    Email author
  • Jordina Belmonte
    • 1
    • 2
  • Marta Alarcón
    • 3
  • Mirna López-Pacheco
    • 1
  1. 1.Institut de Ciència i Tecnologia Ambientals, ICTAUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Departament de Biologia Animal, Biologia Vegetal i EcologiaUniversitat Autònoma de Barcelona (UAB)BellaterraSpain
  3. 3.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations