, Volume 28, Issue 2, pp 285–289 | Cite as

Detection of antibiotic resistance genes associated with methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci in hospital air filter dust by PCR

  • Christopher N. Drudge
  • Sigmund Krajden
  • Richard C. Summerbell
  • James A. Scott
Brief Communication


Dust from the pre-filters of stand-alone hospital isolation room air cleaners was tested by PCR for the presence of antibiotic resistance genes associated with methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci. Resistance genes for three classes of antibiotics (aac(6′)-aph(2″), ermA, and mecA) were detected in multiple samples, indicating the presence of genetic material and likely cells of multidrug-resistant MRSA and other staphylococci in hospital air and that stand-alone air cleaners can reduce airborne levels of these contaminants. Screening for vanA was negative. Our results further suggest that dust may serve as an important reservoir of genetic elements that can confer drug resistance.


Hospital infection control Bioaerosols Drug resistance genes Air cleaners Dust microbiology 



This study was funded in part by grants from AllerGen NCE and the Ontario Workplace Safety and Insurance Board (WSIB). All authors report no potential conflicts of interest with regard to this article. Elizabeth Lamb from Abatement Technologies kindly provided performance specifications of two of the devices tested.


  1. Cimolai, N. (2008). MRSA and the environment: Implications for comprehensive control measures. European Journal of Clinical Microbiology and Infectious Disease, 27(7), 481–493.CrossRefGoogle Scholar
  2. Clark, N. C., Cooksey, R. C., Hill, B. C., Swenson, J. M., & Tenover, F. C. (1993). Characterization of glycopeptide-resistant enterococci from US hospitals. Antimicrobial Agents and Chemotherapy, 37(11), 2311–2317.Google Scholar
  3. Coia, J. E., Duckworth, G. J., Edwards, D. I., Farrington, M., Fry, C., Humphreys, H., et al. (2006). Guidelines for the control and prevention of methicillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. Journal of Hospital Infection, 63(Suppl 1), S1–S44. doi: 10.1016/j.jhin.2006.01.001.CrossRefGoogle Scholar
  4. Dancer, S. J. (2008). Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: The case for hospital cleaning. Lancet Infectious Disease, 8(2), 101–113. doi: 10.1086/527392.CrossRefGoogle Scholar
  5. Geha, D. J., Uhl, J. R., Gustaferro, C. A., & Persing, D. H. (1994). Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. Journal of Clinical Microbiology, 32(7), 1768–1772.Google Scholar
  6. Gilbert, Y., Veillette, M., & Duchaine, C. (2010). Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia, 26(3), 185–194. doi: 10.1007/s10453-010-9155-1.CrossRefGoogle Scholar
  7. Kumari, D. N., Haji, T. C., Keer, V., Hawkey, P. M., Duncanson, V., & Flower, E. (1998). Ventilation grilles as a potential source of methicillin-resistant Staphylococcus aureus causing an outbreak in an orthopaedic ward at a district general hospital. Journal of Hospital Infection, 39(2), 127–133. doi: 10.1016/S0195-6701(98)90326-7.CrossRefGoogle Scholar
  8. Lina, G., Piémont, Y., Godail-Gamot, F., Bes, M., Peter, M. O., Gauduchon, V., et al. (1999a). Involvement of Panton-Valentine leukocidin—producing Staphylococcus aureus in primary skin infections and pneumonia. Clinical and Infectious Disease, 29(5), 1128–1132. doi: 10.1086/313461.CrossRefGoogle Scholar
  9. Lina, G., Quaglia, A., Reverdy, M. E., Leclercq, R., Vandenesch, F., & Etienne, J. (1999b). Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrobial Agents and Chemotherapy, 43(5), 1062–1066.Google Scholar
  10. Martineau, F., Picard, F. J., Grenier, L., Roy, P. H., Ouellette, M., & Bergeron, M. G. (2000). Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. Journal of Antimicrobial Chemotherapy, 46(4), 527–534.CrossRefGoogle Scholar
  11. Otter, J. A., Havill, N. L., & Boyce, J. M. (2007). Evaluation of real-time polymerase chain reaction for the detection of methicillin-resistant Staphylococcus aureus on environmental surfaces. Infection Control and Hospital Epidemiology, 28(8), 1003–1005. doi: 10.1086/519207.CrossRefGoogle Scholar
  12. Sievert, D. M., Rudrik, J. T., Patel, J. B., McDonald, L. C., Wilkins, M. J., & Hageman, J. C. (2008). Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clinical Infectious Disease, 46(5), 668–674. doi: 10.1086/52739.CrossRefGoogle Scholar
  13. Stanley, N. J., Kuehn, T. H., Kim, S. W., Raynor, P. C., Anantharaman, S., Ramakrishnan, M. A., et al. (2008). Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers. Journal of Environmental Monitoring, 10(4), 474–481. doi: 10.1039/b719316e.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christopher N. Drudge
    • 1
    • 4
  • Sigmund Krajden
    • 2
  • Richard C. Summerbell
    • 1
    • 3
  • James A. Scott
    • 1
    • 3
  1. 1.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
  2. 2.St. Joseph’s Health CentreTorontoCanada
  3. 3.SporometricsTorontoCanada
  4. 4.School of Geography & Earth SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations