Skip to main content

Measurement of culturable airborne staphylococci downwind from a naturally ventilated broiler house

Abstract

The objective of this study was to estimate the possible travel distance of airborne bacteria emitted from a naturally ventilated broiler house by using staphylococci as indicator organisms. Air samples were taken during the second half of three fattening periods with Impinger (AGI-30) in the barn and simultaneously upwind and downwind from the building. Staphylococci concentrations varied between 1 × 106 and 1 × 107 cfu m−3 in the barn. No Staphylococci were detected in air samples at the upwind side. A strong exponential decrease of these bacteria was observed at three sampling heights (1.5, 4.0 and 9.5 m) in the main wind direction downwind of the barn. Staphylococci concentrations up to 5.9 × 103 cfu m−3 were detected at the farthest sampling point (333 m) downwind. Identification to the species level by means of a 16S–23S ITS PCR confirmed that Staphylococcus spp. from downwind samples originated from the barn. Staphylococci served as an useful indicator to demonstrate the travel distance of bacterial emissions originating from a naturally ventilated broiler house. These findings indicate that airborne transmission of viable bacteria from this type of housing system to adjacent residential dwellings or animal houses several hundred metres away is possible.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Bull, S. A., Allen, V. M., Domingue, G., Jørgensen, F., Frost, J. A., Ure, R., et al. (2006). Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Applied and Environmental Microbiology, 72, 645–652.

    Article  CAS  Google Scholar 

  • Deprés, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Pöschl, U. (2007). Characterization of primary biogenic aerosol particles in urban, rural and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4, 1127–1141.

    Article  Google Scholar 

  • Devrise, L. A., Schleifer, K. H., & Adegoke, G. O. (1985). Identification of coagulase-negative staphylococci from farm animals. Journal of Applied Bacteriology, 58, 45–55.

    Article  Google Scholar 

  • Dungan, R. S., & Leytem, A. B. (2009). Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World Journal of Microbiology & Biotechnology, 25, 1505–1518.

    Article  Google Scholar 

  • Formosa, L. C. (2005). Calculating air exchange rates from broiler houses. http://webdoc.sub.gwdg.de/diss/2005/formosa/formosa.pdf. Accessed 1 Janauary 2011.

  • Freney, J., Kloos, W. E., Hajek, V., & Webster, J. A. (1999). Recommended minimal standards for description of new staphylococcal species. International Journal of Systematic and Evolutionary Microbiology, 49, 489–502.

    CAS  Google Scholar 

  • Harrison, R. M., Jones, A. M., Biggins, P. D. E., Pomeroy, N., Cox, C. S., Kidd, S. P., et al. (2005). Climate factors influencing bacteria count in background air samples. International Journal of Biometeorology, 49, 167–178.

    Article  Google Scholar 

  • Hartung, J., & Saleh, M. (2007). Composition of dust and effects on animals. Landbauforschung Völkenrode FAL Agricultural Research, 308, 111–116.

    CAS  Google Scholar 

  • Hartung, J. & Schulz, J. (2008). Risks caused by bio-aerosols in poultry houses. In: Thieme, O. & Pilling, D. (Eds.), Poultry in the twenty-first Century. Avian influenza and beyond. International poultry conference, Bangkok, 05–07.11.07, 1–11.

  • Hinz, T., Wiemann, H. D., Hartung, J., & Wiegand, B. (1993). Luftqualität in Louisiana-Ställen. Teil 1: System- und Methodenbeschreibung sowie erste Ergebnisse–Schwerpunkt Staub. Landbauforschung Völkenrode, 43, 39–46.

    Google Scholar 

  • Hirst, J. M. (1995). Bioaerosols: Introduction, retrospect and prospect. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosols handbook (pp. 5–14). Florida, USA: CRC Press.

    Google Scholar 

  • Homes, M. J., Heber, A. J., Wu, C. C., Clark, L. K., Grant, R. H., Zimmermann, N. J., et al. (2000). Viability of bioaerosols produced from a swine facility. http://www.extension.purdue.edu/pork/house/conf.htm. Accessed 11 Janauary 2011.

  • Köllner, B., & Heller, D. (2006). Ambient air concentration of bioaerosols in the vicinity of a pigpen: Results of the project, health-related effects of bioaerosols emitted by livestock husbandries. Gefahrstoffe Reinhaltung der Luft, 66, 349–354.

    Google Scholar 

  • Lighthart, B., & Mohr, A. J. (1987). Estimating downwind concentrations of viable airborne microorganisms in dynamic atmospheric conditions. Applied and Environmental Microbiology, 53, 1580–1583.

    CAS  Google Scholar 

  • Lin, X., Reponen, T. A., Willeke, K., Grinshpun, S. A., Foarde, K. K., & Ensor, D. S. (1999). Long term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291–4298.

    Article  CAS  Google Scholar 

  • Lu, J., Sanchez, S., Hofacre, C., Maurer, J. J., Harmon, B. G., & Lee, M. D. (2003). Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Applied and Environmental Microbiology, 69, 901–908.

    Article  CAS  Google Scholar 

  • Madelin, T. M., & Wathes, C. M. (1989). Air hygiene in a broiler house: Comparison of deep litter with raised netting floors. British Poultry Science, 30, 23–37.

    Article  CAS  Google Scholar 

  • Mendoza, M., Meugnier, H., Bes, M., Etienne, J., & Freney, J. (1998). Identification of Staphylococcus species by 16S–23S rDNA intergenic spacer PCR analysis. International Journal of Systematic and Evolutionary Microbiology, 48, 1049–1055.

    CAS  Google Scholar 

  • Millner, P. D. (2009). Bioaerosols associated with animal production operations. Bioresource Technology, 100, 5379–5385.

    Article  CAS  Google Scholar 

  • Müller, W., & Wieser, P. (1987). Dust and microbial emissions from animal production. In D. Strauch (Ed.), World animal science B6 (pp. 47–89). Amsterdam, The Netherlands: Elsevier science Publishers BV.

    Google Scholar 

  • Oppliger, A., Charrière, N., Droz, P.-O., & Rinsoz, T. (2008). Exposure to bioaerosols in poultry houses at different stages of fattening: Use of real-time PCR for airborne bacterial quantification. The Annals of Occupational Hygiene, 52, 405–412.

    Article  CAS  Google Scholar 

  • Platz, S. (1979). Dissemination of bacteria emitted from poultry houses and possible risks of environmental pollution, caused by these emissions. Berliner und Münchner Tierärztliche Wochenschrift, 92, 297–301.

    CAS  Google Scholar 

  • Platz, S., Scherer, M., & Unshelm, J. (1995). Studies on load of immissions of fattening pigs and the environment outside of pig: Fattening farms caused by lung passing dust particles, pighouse specific airborne bacteria and ammonia. International Journal of Hygiene and Environmental Health, 196, 399–415.

    CAS  Google Scholar 

  • Schmitt-Pauksztat, G., Rosenthal, E., Büscher, W., & Diekmann, B. (2005). Sinkgeschwindigkeiten von Tierstäuben. Landtechnik, 60, 270–271.

    Google Scholar 

  • Schneider, T., Rosenthal, E., Büscher, W., & Diekmann, B. (2006). Einflussgrößen auf Emissionen, Transmission und Immission von Partikeln. KTBL-Schrift, 449, 104–114.

    Google Scholar 

  • Seedorf, J. (2004). An emission inventory of livestock-related bioaerosols for Lower Saxony, Germany. Atmosheric Environment, 38, 6565–6581.

    Article  CAS  Google Scholar 

  • Seedorf, J., & Hartung, J. (2002). Stäube und Mikroorganismen in der Tierhaltung. KTBL Schrift, 393, 7–144.

    Google Scholar 

  • Shaffer, B. T., & Lighthart, B. (1997). Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal. Microbial Ecology, 34, 167–177.

    Article  Google Scholar 

  • Shimizu, A., Ozaki, J., Kawano, J., Saitoh, Y., & Kimura, S. (1992). Distribution of Staphylococcus species on animal skin. The Journal of Veterinary Medical Science, 54, 355–357.

    Article  CAS  Google Scholar 

  • Takahashi, T., Satoh, I., & Kikuchi, N. (1999). Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. International Journal of Systematic Bacteriology, 49, 725–728.

    Article  CAS  Google Scholar 

  • Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S. A., Willeke, K., Stelma, G. N., et al. (1996). Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Applied and Environmental Microbiology, 62, 2264–2272.

    CAS  Google Scholar 

  • VDI-Guidline 4252, Part 3. (2008). Active sampling of bioaerosols. Separation of airborne bacteria with impingers using the principle of critical nozzle. Beuth Verlag GmbH, 10772 Berlin, Germany.

  • Whyte, R. T. (1993). Aerial pollutants and the health of poultry farmers. World’s Poultry Science Journal, 49, 139–156.

    Article  Google Scholar 

  • Wiegand, B., Hartung, J., Hinz, T., & Wiemann, H. D. (1993). Luftqualität in Louisiana-Ställen. Teil 2: Keim- und Endotoxinbelastungen im luftgetragenen Stallstaub. Landbauforschung Völkenrode, 43, 236–241.

    Google Scholar 

  • Wilcoxon, F., & Wilcox, R. A. (1964). Some rapid approximate statistical procedures. Pearl River, New York: Lederle Laboratories.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by Niedersächsisches Ministerium für den ländlichen Raum, Ernährung, Landwirtschaft und Verbraucherschutz, Hannover, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schulz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulz, J., Formosa, L., Seedorf, J. et al. Measurement of culturable airborne staphylococci downwind from a naturally ventilated broiler house. Aerobiologia 27, 311–318 (2011). https://doi.org/10.1007/s10453-011-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-011-9202-6

Keywords

  • Bioaerosols
  • Emission
  • Airborne
  • Staphylococci
  • Dispersion
  • Broiler house