, Volume 26, Issue 3, pp 171–184 | Cite as

Assessment of bioaerosols at a concentrated dairy operation

  • Robert S. DunganEmail author
  • April B. Leytem
  • Sheryl A. Verwey
  • David L. Bjorneberg
Original paper


Increased bioaerosol loadings in downwind plumes from concentrated animal feeding operations (CAFOs) may increase the risk for allergy and infection in humans. In this study, we monitored airborne concentrations of culturable bacteria and fungi at upwind (background) and downwind sites at a 10,000 milking cow dairy over the course of a year. The average bacterial concentrations at the upwind site were 8.4 × 103 colony forming units (CFU) m−3 and increased to 9.9 × 105 CFU m−3 at the downwind edge of the cattle lots, decreasing to 6.3 × 104 CFU m−3 200 m farther downwind. At the same sites, the average fungal concentrations were 515, 945, and 1,010 CFU m−3, respectively. Significant correlations between the ambient weather conditions and airborne fungal and bacterial concentrations were identified. Sequence analysis of PCR-amplified DNA from bacterial clones and fungal isolates revealed genus and species level differences between upwind and downwind sites. Although we could not cultivate gram-negative bacteria, bacterial clones at downwind sites identified as being gram-negative matched with the following genera: Acinetobacter, Bradyrhizobium, Escherichia, Idiomarina, Methylobacterium, Ralstonia, and Novosphingobium. Fungal isolates from downwind matched with the following genera: Acremonium, Alternaria, Ascomycte, Aspergillus, Basidiomycete, Cladosporium, Davidiella, Doratomyces, Emericella, Lewia, Onygenales, Penicillium, Rhizopus, and Ulocladium. None of the bacterial and fungal sequence matches were affiliated with genera and species known to be pathogenic to humans. Overall, the data suggest that exposure to bioaerosols in the downwind environment decreases with increasing distance from the open-lot dairy.


Airborne bacteria and fungi Bioaerosols CAFOs Dairy Impaction Impingement Polymerase chain reaction 



We would like to thank numerous individuals at the dairy for accommodating us during this long study. We also thank the following individuals: Susie Hansen, Myles Miller, Patsy Heinemann, and Ann Pool.


  1. Adhikari, A., Sen, M. M., Gupta-Bhattacharya, S., & Chanda, S. (2004). Volumetric assessment of airborne fungi in two sections of a rural indoor dairy cattle shed. Environment International, 29, 1071–1078.CrossRefGoogle Scholar
  2. Blanchard, D. C., & Syzdek, L. (1970). Mechanism for the water-to-air transfer and concentration of bacteria. Science, 170, 626–628.CrossRefGoogle Scholar
  3. Brandi, G., Sisti, M., & Amagliani, G. (2000). Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. Journal of Applied Microbiology, 88, 845–852.CrossRefGoogle Scholar
  4. Brooks, J. P., Gerba, C. P., & Pepper, I. L. (2004). Biological aerosol emission, fate, and transport from municipal and animal wastes. Journal of Residuals Science & Technology, 1, 15–28.Google Scholar
  5. Brooks, J. P., Tanner, B. D., Josephson, K. L., Gerba, C. P., Haas, C. N., & Pepper, I. L. (2005). A national study on the residential impact of biological aerosols from the land application of biosolids. Journal of Applied Microbiology, 99, 310–322.CrossRefGoogle Scholar
  6. Brown, J. K. M., & Hovmoller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.CrossRefGoogle Scholar
  7. Carducci, A., Gemelli, C., Cantiani, L., Casini, B., & Rovini, E. (1999). Assessment of microbial parameters as indicators of viral contamination of aerosol from urban sewage treatment plants. Letters in Applied Microbiology, 28, 207–210.CrossRefGoogle Scholar
  8. Centner, T. J. (2003). Regulating concentrated animal feeding operations to enhance the environment. Environmental Science & Policy, 6, 433–440.CrossRefGoogle Scholar
  9. Chang, C. W., Chung, H., Huang, C. F., & Su, H. J. J. (2001). Exposure of workers to airborne microorganisms in open-air swine houses. Applied and Environmental Microbiology, 67, 155–161.CrossRefGoogle Scholar
  10. Cox, C. S. (1995a). Physical aspects of bioaerosol particles. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosols Handbook (pp. 15–25). New York: Lewis Publishers.Google Scholar
  11. Cox, C. S. (1995b). Stability of airborne microbes and allergens. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosols handbook (pp. 77–99). New York: Lewis Publishers.Google Scholar
  12. Crook, B., & Sherwood-Higham, J. L. (1997). Sampling and assay of bioaerosols in the work environment. Journal of Aerosol Science, 28, 417–426.CrossRefGoogle Scholar
  13. Dungan, R. S., & Leytem, A. B. (2009a). Airborne endotoxin concentrations at a large open-lot dairy in southern Idaho. Journal of Environmental Quality, 38, 1919–1923.CrossRefGoogle Scholar
  14. Dungan, R. S., & Leytem, A. B. (2009b). Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World Journal of Microbiology and Biotechnology, 25, 1505–1518.CrossRefGoogle Scholar
  15. Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Heath Association, American Water Works Association, Water Environment Federation.Google Scholar
  16. Ehrlich, R., Miller, S., & Walker, R. L. (1970). Relationship between atmospheric temperature and survival of airborne bacteria. Applied Microbiology, 19, 245–249.Google Scholar
  17. Fracchia, L., Pietronave, S., Rinaldi, M., & Martinotti, M. G. (2006). The assessment of airborne bacterial contamination in three composting plants revealed site-related biological hazard and seasonal variations. Journal of Applied Microbiology, 100, 973–984.CrossRefGoogle Scholar
  18. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.CrossRefGoogle Scholar
  19. Green, C. F., Gibbs, S. G., Tarwater, P. M., Mota, L. C., & Scarpino, P. V. (2006). Bacterial plume emanating from the air surrounding swine confinement operations. Journal of Occupational and Environmental Hygiene, 3, 9–15.CrossRefGoogle Scholar
  20. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  21. Heederik, D., Sigsgaard, T., Thorne, P. S., Kline, J. N., Avery, R., Bønløkke, J. H., et al. (2007). Heath effects of airborne exposures from concentrated animal feeding operations. Environmental Health Perspectives, 115, 298–302.CrossRefGoogle Scholar
  22. Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Science of the Total Environment, 326, 151–180.CrossRefGoogle Scholar
  23. Kiekhaefer, M. S., Donham, K. J., Whitten, P., & Thorne, P. S. (1995). Cross seasonal studies of airborne microbial populations and environment in swine buildings: Implications for worker and animal health. Annals of Agricultural and Environmental Medicine, 2, 37–44.Google Scholar
  24. Li, D.-W., & Kendrick, B. (1995). A year-round study of functional relationships of airborne fungi with meteorological factors. International Journal of Biometeorology, 39, 74–80.CrossRefGoogle Scholar
  25. Lighthart, B. (1994). Physics of microbial bioaerosols. In B. Lighthart & A. J. Mohr (Eds.), Atmospheric microbial aerosols: Theory and applications (pp. 5–27). New York: Chapman & Hall.Google Scholar
  26. Lin, X., Reponen, T. A., Willeke, K., Grinshpun, S. A., Foarde, K. K., & Ensor, D. S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291–4298.CrossRefGoogle Scholar
  27. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., et al. (1998). Design and evaluation of bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64, 795–799.Google Scholar
  28. Marthi, B., Fieland, V. P., Walter, M., & Seidler, R. J. (1990). Survival of bacteria during aerosolization. Applied and Environmental Microbiology, 56, 3463–3467.Google Scholar
  29. Millner, P. D. (2009). Bioaerosols associated with animal production operations. Bioresource Technology, 100, 5379–5385.CrossRefGoogle Scholar
  30. Mohr, A. J. (2007). Fate and transport of microorganisms in air. In C. J. Hurst, et al. (Eds.), Manual for environmental microbiology (pp. 952–960). Washington DC: ASM Press.Google Scholar
  31. Muyzer, G., DeWaal, E. C., & Uitterlinden, A. G. (1993). Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis by polymerase chain reaction-amplified genes coding for 16s rRNA. Applied and Environmental Microbiology, 59, 695–700.Google Scholar
  32. Nicholson, K. W. (1995). Physical aspects of bioaerosol sampling and deposition. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosols handbook (pp. 27–53). New York: Lewis Publishers.Google Scholar
  33. Pillai, S. D., & Ricke, S. C. (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48, 681–696.CrossRefGoogle Scholar
  34. Poon, C. P. C. (1966). Studies on the instantaneous death of airborne Escherichia coli. American Journal of Epidemiology, 84, 1–9.Google Scholar
  35. Reysenback, A. L., Wickham, G. S., & Pace, N. R. (1994). Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Applied and Environmental Microbiology, 60, 2113–2119.Google Scholar
  36. Rule, A. M., Chapin, A. R., McCarthy, S. A., Gibson, K. E., Schwab, K. J., & Buckley, T. J. (2005). Assessment of an aerosol treatment to improve air quality in a swine concentrated animal feeding operation (CAFO). Environmental Science and Technology, 39, 9649–9655.CrossRefGoogle Scholar
  37. SAS Institute. (2004). SAS/STAT user’s guide. Release 9.1. Cary, NC.: SAS Institute, Inc.Google Scholar
  38. Schulze, A., van Strien, R., Ehrenstein, V., Schierl, R., Küchenhoff, H., & Radon, K. (2006). Ambient endotoxin level in an area with intensive livestock production. Annals of Agricultural and Environmental Medicine, 13, 87–91.Google Scholar
  39. Songer, J. R. (1967). Influence of relative humidity on the survival of some airborne viruses. Applied Microbiology, 15, 35–42.Google Scholar
  40. Spaan, S., Wouters, I. M., Oosting, I., Doekes, G., & Heederik, D. (2006). Exposure to inhalable dust and endotoxins in agricultural industries. Journal of Environmental Monitoring, 8, 63–72.CrossRefGoogle Scholar
  41. Stetzenbach, L. D. (2007). Introduction to aerobiology. In C. J. Hurst, et al. (Eds.), Manual for environmental microbiology (pp. 952–960). Washington, DC: ASM Press.Google Scholar
  42. St-Germain, G., & Summerbell, R. (1996). Identifying filamentous fungi: A clinical laboratory handbook. Belmont, CA: Star Publishing Co.Google Scholar
  43. Sweeten, J. M., Parnell, C. B., Etheredge, R. S., & Osborne, D. (1988). Dust emissions in cattle feedlots. Veterinary Clinics of North America. Food Animal Practice, 4, 557–578.Google Scholar
  44. Taha, M. P. M., Pollard, S. J. T., Sarkar, U., & Longhurst, P. (2005). Estimating fugitive bioaerosol releases from static compost windrows: Feasibility of a portable wind tunnel approach. Waste Management, 25, 445–450.CrossRefGoogle Scholar
  45. Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S. A., Willeke, K., Stelma, G. N., et al. (1996). Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Applied and Environmental Microbiology, 62, 2264–2272.Google Scholar
  46. US Environmental Protection Agency. (2002). Method 1604: Total Coliforms and Escherichia coli in water by membrane filtration using a simultaneous detection technique (MI medium). EPA 821-R-02–024. Washington, DC: Office of Water.Google Scholar
  47. USDA, National Agricultural Statistics Service [online]. (2008). Available at (verified on 2 June 2008).
  48. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press.Google Scholar
  49. Wickman, H. H. (1994). Deposition, adhesion, and release. In B. Lighthart & A. J. Mohr (Eds.), Atmospheric microbial aerosols. New York: Chapman & Hall.Google Scholar
  50. Wilson, S. C., Morrow-Tesch, J., Straus, D. C., Cooley, J. D., Wong, W. C., Mitlohner, F. M., et al. (2002). Airborne microbial flora in a cattle feedlot. Applied and Environmental Microbiology, 68, 3238–3242.CrossRefGoogle Scholar
  51. Zucker, B.-A., & Müller, W. (1998). Concentrations of airborne endotoxin in cow and calf stables. Journal of Aerosol Science, 29, 217–221.CrossRefGoogle Scholar
  52. Zucker, B.-A., Trojan, S., & Müller, W. (2000). Airborne gram-negative bacterial flora in animal houses. Journal of Veterinary Medicine, B, 47, 37–46.CrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Robert S. Dungan
    • 1
    Email author
  • April B. Leytem
    • 1
  • Sheryl A. Verwey
    • 1
  • David L. Bjorneberg
    • 1
  1. 1.Northwest Irrigation and Soils Research Laboratory, Agricultural Research ServiceUS Department of AgricultureKimberlyUSA

Personalised recommendations