Aerobiologia

, Volume 25, Issue 4, pp 321–332 | Cite as

Influence of the North Atlantic Oscillation on grass pollen counts in Europe

  • Matt Smith
  • Jean Emberlin
  • Alicja Stach
  • Auli Rantio-Lehtimäki
  • Eric Caulton
  • Michel Thibaudon
  • Charlotte Sindt
  • Siegfried Jäger
  • Regula Gehrig
  • Giuseppe Frenguelli
  • Victoria Jato
  • F. Javier Rodríguez Rajo
  • Purificación Alcázar
  • Carmen Galán
Original Paper

Abstract

Relationships between temporal variations in the North Atlantic Oscillation (NAO) and grass pollen counts at 13 sites in Europe, ranging from Córdoba in the south-west and Turku in the north-east, were studied in order to determine spatial differences in the amount of influence exerted by the NAO on the timing and magnitude of grass pollen seasons. There were a number of significant (P < 0.05) relationships between the NAO and start dates of the grass pollen season at the 13 pollen-monitoring sites. The strongest associations were generally recorded near to the Atlantic coast. Several significant correlations also existed between winter averages of the NAO and grass pollen season severity. Traditional methods for predicting the start or magnitude of grass pollen seasons have centred on the use of local meteorological observations, but this study has shown the importance of considering large-scale patterns of climate variability like the NAO.

Keywords

North Atlantic Oscillation Grass pollen Cluster analysis Phenology Aerobiology Latitude 

References

  1. Aas, K., Bachert, C., Bergmann, K., Bergmann, R., Bonini, S., Bousqet, J., et al. (1997). European white paper: Allergic diseases as a health problem. Brussels: The UCB Institute of Allergy.Google Scholar
  2. Aasa, A., Jaagus, J., Ahas, R., & Sepp, M. (2004). The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology, 24, 1551–1564.CrossRefGoogle Scholar
  3. Atkinson, M. D., Kettlewell, P. S., Hollins, P. D., Stephenson, D. B., & Hardwick, N. V. (2005). Summer climate mediates UK wheat quality response to winter North Atlantic Oscillation. Agricultural and Forest Meteorology, 130, 27–37.CrossRefGoogle Scholar
  4. BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. Aylesford: The British Aerobiology Federation.Google Scholar
  5. Beniston, M., & Jungo, P. (2002). Shifts in the distributions of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behaviour of the North Atlantic Oscillation. Theoretical and Applied Climatology, 71, 29–42.CrossRefGoogle Scholar
  6. Blaiss, M. S. (2003). Important aspects in management of allergic rhinitis; compliance, cost, and quality of life. Allergy and Asthma Proceedings, 24(4), 231–238.Google Scholar
  7. Burr, M. L. (1999). Grass pollen: Trends and predictions. Clinical and Experimental Allergy, 29, 735–738.CrossRefGoogle Scholar
  8. Cariñanos, P., Emberlin, J., Galán, C., & Dominguez Vilches, E. (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia, 16(3/4), 339–346.CrossRefGoogle Scholar
  9. Casty, C., Wanner, H., Luterbacher, J., Esper, J., & Böhm, R. (2005). Temperature and precipitation variability in the European Alps since 1500. International Journal of Climatology, 25, 1855–1880.CrossRefGoogle Scholar
  10. D’Amato, G. (2000). Urban air pollution and plant derived respiratory allergy. Clinical and Experimental Allergy, 30, 628–636.CrossRefGoogle Scholar
  11. D’Odorico, P., Yoo, J., & Jaeger, S. (2002). Changing seasons: An effect of the North Atlantic Oscillation? Journal of Climate, 15(4), 435–445.CrossRefGoogle Scholar
  12. Emberlin, J. (1997). Grass tree and weed pollens. In A. B. Kay (Ed.), Allergy and allergic diseases (Vol. 2, pp. 845–857). Oxford: Blackwell.Google Scholar
  13. Emberlin, J. (2000). Aerobiology. In W. W. Busse & S. T. Holgate (Eds.), Asthma and rhinitis (Vol. 2). Oxford: Blackwell.Google Scholar
  14. Emberlin, J., Jaeger, S., Dominguez Vilches, E., Galan Soldevilla, C., Hodal, L., Mandrioli, P., et al. (2000). Temporal and geographical variations in grass pollen seasons in areas of western Europe: And analysis of season dates at sites of the European pollen information system. Aerobiologia, 16, 373–379.CrossRefGoogle Scholar
  15. Emberlin, J., Mullins, J., Cordon, J., Jones, S., Millington, W., Brooke, M., et al. (1999). Regional variations in grass pollen seasons in the UK, long term trends and forecast models. Clinical and Experimental Allergy, 29, 347–356.CrossRefGoogle Scholar
  16. Emberlin, J., Savage, M., & Jones, S. (1993). Annual variations in grass pollen seasons in London 1961–1990: Trends and forecast models. Clinical and Experimental Allergy, 23, 911–918.CrossRefGoogle Scholar
  17. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester United Kingdom 1996–2005. International Journal of Biometeorology, 51, 181–191.CrossRefGoogle Scholar
  18. Ferguson, B. J. (2004). Influences of allergic rhinitis on sleep. Otolaryngol Head Neck Surgery, 130(5), 617–629.CrossRefGoogle Scholar
  19. Fowler, H. J., & Kilsby, C. G. (2002). Precipitation and the North Atlantic Oscillation: A study of climatic variability in Northern England. International Journal of Climatology, 22, 843–866.CrossRefGoogle Scholar
  20. Frenguelli, G. (2002). Interactions between climatic changes and allergenic plants. Monaldi Archives of Chest Disease, 57(2), 141–143.Google Scholar
  21. Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish Aerobiology Network (REA) management and quality manual. Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.Google Scholar
  22. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  23. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676–679.CrossRefGoogle Scholar
  24. Huynen, M., Menne, B., Behrendt, H., Bertollini, R., Bonini, S., Brandao, R., Brown-Fährlander, C., Clot, B., D’Ambrosio, C., De Nuntiis, P., Ebi, K. L., Emberlin, J., Orbanne, E. E., Galán, C., Jäger, S., Kovats, S., Mandrioli, P., Martens, P., Menzel, A., Nyenzi, B., Rantio Lehtimäki, A., Ring, J., Rybnicek, O., Traidl-Hoffmann, Van Vliet, A., Voigt, T., Weiland, S., & Wickman, M. (2003). Phenology and human health: Allergic disorders. Report of a WHO meeting, Rome, Italy.Google Scholar
  25. Jäger, S. (2000). Ragweed (Ambrosia) sensitisation rates correlate with the amount of inhaled airborne pollen. A 14-year study in Vienna, Austria. Aerobiologia, 16(1), 149–153.CrossRefGoogle Scholar
  26. Kushnir, Y. (1999). Europe’s winter prospects. Nature, 398, 289–291.CrossRefGoogle Scholar
  27. Laaidi, M. (2001). Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45(1), 1–7.CrossRefGoogle Scholar
  28. Laaidi, M., Thibaudon, M., & Besancenot, J.-P. (2003). Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). International Journal of Biometeorology, 48(2), 65–73.CrossRefGoogle Scholar
  29. Langenberg, H. (2000). Oscillating opinion. Nature, 408, 924–925.CrossRefGoogle Scholar
  30. Mäkinen, Y. (1981). Random sampling in the study of atmospheric slides: Report aerobiology laboratory. Finland: Turku University 5:27–43.Google Scholar
  31. Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in aerobiology. Bologna: Pitagora Editrice.Google Scholar
  32. Mandrioli, P., Institute of Atmospheric and Oceanic Sciences (ISAO), National Research Council (CNR)—Bologna, Italy. (1995). Method for sampling and counting of airborne pollen and fungal spores. http://www.polleninfo.org/index.php?language=en&nav=_n2&module=article&action=first_page&row=2&id_parent=2371.
  33. Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., et al. (2001). North Atlantic climate variability: Phenomena, impacts and mechanisms. International Journal of Climatology, 21(15), 1863–1898.CrossRefGoogle Scholar
  34. Meltzer, E. O. (1998). Treatment options for the child with allergic rhinitis. Clinical Pediatrics, 37, 1–10.CrossRefGoogle Scholar
  35. Menzel, A., Sparks, T. H., Estrella, N., & Eckhardt, S. (2005). ‘SSW to NNE’—North Atlantic Oscillation affects the progress of seasons across Europe. Global Change Biology, 11, 909–918.CrossRefGoogle Scholar
  36. Muñoz-Díaz, D., & Rodrigo, F. S. (2003). Effects of the North Atlantic Oscillation on the probability for climatic categories of local monthly rainfall in southern Spain. International Journal of Climatology, 23, 381–397.CrossRefGoogle Scholar
  37. Muñoz-Díaz, D., & Rodrigo, F. S. (2004). Impacts on the North Atlantic Oscillation on the probability of dry and wet winters in Spain. Climate Research, 27, 33–43.CrossRefGoogle Scholar
  38. Osborn, T. (2006). Recent variations in the winter North Atlantic Oscillation. Weather, 61(12), 353–355.CrossRefGoogle Scholar
  39. Osborn, T., Climatic Research Unit. (2002). North Atlantic Oscillation. http://www.cru.uea.ac.uk/~timo/projpages/nao_update.htm.
  40. Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C., & Stenseth, N. C. (2001). Ecological effects of the North Atlantic Oscillation. Oecologia, 128, 1–14.CrossRefGoogle Scholar
  41. Pallant, J. (2001). SPSS Survival Manual. Buckingham: Open University Press.Google Scholar
  42. Pessi, A.-M. (2003). Comparison of three microscopic counting methods for Burkard samples. Worcester, UK: Third European Symposium on Aerobiology.Google Scholar
  43. Piotrowska, K., & Weryszko-Chmielewska, E. (2006). Ambrosia pollen in the air of Lublin, Poland. Aerobiologia, 22, 151–158.CrossRefGoogle Scholar
  44. Post, E., & Stenseth, N. C. (1999). Climatic variability, plant phenology, and northern ungulates. Ecology, 80(4), 1322–1339.CrossRefGoogle Scholar
  45. Sanchez-Mesa, J. A., Galán, C., & Hervás, C. (2005). The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. International Journal of Biometeorology, 49, 355–362.CrossRefGoogle Scholar
  46. Sanchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., & Caulton, E. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.CrossRefGoogle Scholar
  47. Scheifinger, H., Menzel, A., Koch, E., Peter, C., & Ahas, R. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology, 22, 1739–1755.CrossRefGoogle Scholar
  48. Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences. London: Arnold.Google Scholar
  49. Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35(10), 1400–1406.CrossRefGoogle Scholar
  50. Smith, M., Emberlin, J., Stach, A., Czarnecka-Operacz, M., Jenerowicz, D., & Silny, W. (2007). The regional importance of Alnus pollen as an aeroallergen: A comparative study of Alnus pollen counts from Worcester (UK) and Poznań (Poland). Annals of Agricultural and Environmental Medicine (14), 123–128.Google Scholar
  51. Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.Google Scholar
  52. Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K.-S., & Lima, M. (2002). Ecological effects of climate fluctuations. Science, 297, 1292–1296.CrossRefGoogle Scholar
  53. Thibaudon, M., & Sulmont, G. (1999). Pollen monitoring network: Techniques and organization. Revue Française d’Allergologie et d’Immunologie Clinique, 39(4), 263–266.CrossRefGoogle Scholar
  54. Tildes Gomes, P. (2000). Relationships between Iberian Rainfall Variability and the North Atlantic Oscillation. International scientific meeting on the detection and modelling of recent climate change and its effects on a regional scale. Tarragona: Springer.Google Scholar
  55. Van Vliet, A. J. H., Overeem, A., De Groot, R., Jacobs, A. F. G., & Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in The Netherlands. International Journal of Climatology, 22, 1757–1767.CrossRefGoogle Scholar
  56. Visbeck, M., Hurrell, J. W., Polvani, L., & Cullen, H. M. (2001). The North Atlantic Oscillation: Past, present and future. In Proceedings at the 12th Annual Symposium on Frontiers of Science.Google Scholar
  57. Wedgbrow, C. S., Wilby, R. L., Fox, H. R., & O’Hare, G. (2002). Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales. International Journal of Climatology, 22(2), 219–236.CrossRefGoogle Scholar
  58. Werner, A., & Schonwiese, C.-D. (2002). A statistical analysis of the North Atlantic Oscillation and its impact on European temperature. The Global Atmosphere and Ocean System, 8(4), 293–306.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Matt Smith
    • 1
    • 2
  • Jean Emberlin
    • 1
  • Alicja Stach
    • 2
  • Auli Rantio-Lehtimäki
    • 3
  • Eric Caulton
    • 4
  • Michel Thibaudon
    • 5
  • Charlotte Sindt
    • 5
  • Siegfried Jäger
    • 6
  • Regula Gehrig
    • 7
  • Giuseppe Frenguelli
    • 8
  • Victoria Jato
    • 9
  • F. Javier Rodríguez Rajo
    • 9
  • Purificación Alcázar
    • 10
  • Carmen Galán
    • 10
  1. 1.National Pollen and Aerobiology Research UnitUniversity of WorcesterWorcesterUK
  2. 2.Laboratory of AeropalynologyAdam Mickiewicz UniversityPoznanPoland
  3. 3.Aerobiology UnitUniversity of TurkuTurkuFinland
  4. 4.Scottish Centre for Pollen StudiesNapier UniversityEdinburghUK
  5. 5.Réseau National de Surveillance AerobiologiqueMontpellierFrance
  6. 6.HNO KlinikWienAustria
  7. 7.Swiss Pollen NetworkFederal Office of Meteorology and Climatology (MeteoSwiss)ZurichSwitzerland
  8. 8.Department of Plant BiologyUniversity of PerugiaPerugiaItaly
  9. 9.Department of Plant Biology and Soil SciencesUniversity of VigoOurenseSpain
  10. 10.Department of Plant BiologyUniversity of CórdobaCórdobaSpain

Personalised recommendations