Advertisement

Aerobiologia

, Volume 23, Issue 4, pp 231–238 | Cite as

Short-term effects of pollen species on hospital admissions in the city of Madrid in terms of specific causes and age

  • Julio DíazEmail author
  • Cristina Linares
  • Aurelio Tobías
Original Paper

Abstract

Background In recent years there has been a notable increase in respiratory diseases in industrialised countries, which is attributed to a combination of chemical atmospheric pollution and the allergens existing in the atmosphere of big cities. Few studies, however, have analysed the effect of different pollen species on the different causes of hospital admissions other than those exclusively owing to asthma. Objective The aim of this investigation was to analyse the influence of the most abundant pollen species with the highest allergenic potential in Madrid’s atmosphere on daily emergency hospital admissions – from all causes and specific causes – according to different age groups. Methods An ecological time-series design was adopted in which the effects were quantified using Poisson regression models, taking into account different confusion factors, such as chemical and acoustic atmospheric pollution. Results Statistically significant associations were found between pollen species and hospital admissions due to respiratory causes, and between pollen species and all causes of hospital admissions and, to a lesser degree, circulatory causes. The impact was greater in the younger age groups. Concentrations of Poaceae and Platanus pollen species were the factors showing the highest correlation to the different causes of admission. Conclusion The relative risks analysis revealed a significant effect between the pollen species analysed and health for admitted patients of all age groups; this effect was greater than that detected for the environmental variables traditionally analysed in urban atmospheres.

Keywords

Cupressaceae Hospital admissions Olea Platanus Poaceae Pollen Time-series 

Abbreviations

ACF

Simple autocorrelation function

AR

Attributable risk

COPD

Chronic obstructive pulmonary disease

ICD-IX

International Classification of Diseases version 9

PACF

Partial autocorrelation function

RR

Relative risk

Notes

Acknowledgements

The authors gratefully acknowledge the Madrid Regional Health Authority Palynology Network (PALINOCAM) for providing the pollen data.

References

  1. Akaike, H. (1974). A New look at statistical model identification. IEEE Transactions on Automatic Control, 9, 716–722.CrossRefGoogle Scholar
  2. Akinbami, L. J., & Schoendord, K. C. (2002). Trends in childhood asthma: Prevalence, healthcare utilization and mortality. Pediatrics, 110, 315–322.CrossRefGoogle Scholar
  3. Anderson, H. R., Ponce de Leon, A., Bland, J. M., et al. (1998). Air pollution, pollens and daily admissions for asthma in London 1987–92. Thorax, 53, 842–848.CrossRefGoogle Scholar
  4. Brunekreef, B., Hoek, G., Fischer, P., et al. (2000). Relation between airborne pollen concentrations and daily cardiovascular and respiratory-disease mortality. The Lancet, 355, 1517–1518.CrossRefGoogle Scholar
  5. Campbell, M. J., & Tobias, A. (2000). Causality and temporality in the study of short-term effects of air pollution on health. International Journal Epidemiology, 29, 271–273.CrossRefGoogle Scholar
  6. Clot, B. (2003). Trends in airborne pollen : An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiología, 19, 227–234.CrossRefGoogle Scholar
  7. Coste, J., & Spira, A. (1991). Le proportion de cas attributable en Santé Publique: definition(s), estimation(s) et interprétation. Reviste Epidemiologique Santé Publique, 51, 399–41.Google Scholar
  8. Dales, R. E., Cakmak, S., Burnett, R. T., et al. (2000). Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. American Journal Respiratory Critical Care Medicine, 162, 2087–2090.Google Scholar
  9. D’Amato, G. (2002). Environmental urban factors (air pollution and allergens) and the rising trends in allergic respiratory diseases. Allergy, 57(Suppl 72), 30–33.CrossRefGoogle Scholar
  10. D’Amato, G., Liccardi, G., D’Amato, M., et al. (2001). The role of outdoor air pollution and climatic changes on the rising trends in respiratory allergy. Respiratory Medicine, 95, 606–611.CrossRefGoogle Scholar
  11. Díaz, J., & Linares, C. (2007). Impact of high temperatures on hospital admissions in Madrid (Spain): A comparative analysis with mortality in heat waves. European Journal of Public Health (in press).Google Scholar
  12. Díaz, J., García, R., Ribera, P., et al. (1999). Modelling of air pollution and its relationship with mortality and morbidity in Madrid, Spain. International Archives Occupational and Environmental Health, 73, 366–376.Google Scholar
  13. Díaz, J., Alberdi, J. C., Pajares, M. S. et al. (2001). A model for forecasting emergency hospital admissions: Effect of environmental variables. Journal of Environmental Health, 2001, 64, 9–15.Google Scholar
  14. Díaz, J., Linares, C., Sabariego, S., et al. (2006). Predictive model for Cupressceae-Taxaceae in Madrid Using ARIMA models”. In Proc 8th Int Congr Aerobiol. Neuchâtel.Google Scholar
  15. EPA. (2003). Air pollution and children´s health. A fact sheet by Cal/EPA´s Office of Environmental Health Hazards Assessment and the American Lung Association of California.Google Scholar
  16. Frenguelli, G., Tedechini, E., Veronesi, F., et al. (2002). Airborne pine (pinus spp.) pollen in the atmosphere of Perugia (Central Italy): Behavior of pollination in the two last decades. Aerobiología, 18, 223–228.CrossRefGoogle Scholar
  17. Galán, I., Tobías, A., Banegas, J. R., et al. (2003). Short-term effects of air pollution on daily asthma emergency room admissions in Madrid, Spain. European Respiratory Journal, 22, 802–808.CrossRefGoogle Scholar
  18. Gilmour, M. E., Jaakkola, M. S., London, S. J., et al. (2006). How exposure to environmental tobacco smoke, outdoor air pollutants and increased pollen burdens influences the incidence of asthma. Environmental Health Perspectives, 114, 627–633.CrossRefGoogle Scholar
  19. Gutierrez, M., Sáenz, C., Aránguez, E., et al. (2001). Polen atmosférico en la Comunidad de Madrid. Documentos Técnicos de Salud Pública no 70. Editor Consejeria de Sanidad, MadridGoogle Scholar
  20. Hospers, J. J., Rijcken, B., Schouten, J. P., et al. (1999). Eosinophilia and positive skin tests predict cardiovascular mortality in a general population sample followed for 30 years. American Journal Epidemiology, 150, 482–491.Google Scholar
  21. Korhonen, K., Reijonen, T. M., Malmstrom, K., et al. (2002). Hospitalization trends for paediatric asthma in eastern Finland: A 10-yr survey. European Respiratory Journal, 19, 1035–1039.CrossRefGoogle Scholar
  22. Kroll-Smith, S., Brown, P., & Gunter, V. S. (2000) Illness and the environment: A reader in contested medicine. New York: University Press.Google Scholar
  23. Landringan, P. J., Suk, W., & Amler, R. W. (1999). Chemical wastes, children´s health, and the Superfund basic research program. Environmental Health Perspectives, 107, 423–427.CrossRefGoogle Scholar
  24. Lee, J. T., Kim, H., Song, H., et al. (2002). Air pollution and asthma among children in Seoul, Korea. Epidemiology, 13, 481–484.CrossRefGoogle Scholar
  25. Lewis, S. A., Gorden, J. M., Forster, G. E., et al. (2000). Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A&E attendances in Derbyshire UK, 1993–1996. Clinical Experimental Allergy, 30, 1724–1730.CrossRefGoogle Scholar
  26. Lierl, M. B., & Hornung, R. W. (2003). Relationship of outdoor air quality to pediatric asthma exacerbation. Annales Allergy Asthma Inmunologie, 90, 1–2.Google Scholar
  27. Linares, C., Díaz, J., Tobías, A., et al. (2006a) Impact of urban air pollutants and noise levels over daily hospital admissions in children in Madrid: A time series analysis. International Archives Occupational and Environmental Health, 79, 143–152.CrossRefGoogle Scholar
  28. Linares, C., Díaz, J., Tobías, A., et al. (2006b). A review of epidemiological evidence on short term effects of environmental factors of respiratory problems in children. Current Respiratory Medicine Review, 2, 173–181.CrossRefGoogle Scholar
  29. Low, R. B., Bielory, L., Qureshi, A. I., et al. (2006). The relation of strode admissions to recent weather, airborne allergens, air pollution, seasons, upper respiratory infections and asthma incidence, September 11, 2001 and day of the week. Stroke, 37, 951–957.CrossRefGoogle Scholar
  30. McMichael, A. J., Wooddruff, R. E., & Hales, S. (2006). Climate change and human health: Present and future risks. The Lancet, 367, 859–869.CrossRefGoogle Scholar
  31. Morrison, D. S., & McLoone, P. (2001). Changing patterns of hospital admissions for asthma, 1981–1997. Thorax, 56, 687–690.CrossRefGoogle Scholar
  32. Newson, R., Strachan, D., Archiblad, E., et al. (1998). Acute asthma epidemics, weather and pollen in England, 1987–1994. European Respiratory Journal, 11, 694–701.Google Scholar
  33. Ng, T. P., Niti, M., & Tan, W. C. (2003). Trends and ethnic differences in asthma hospitalisations rates in Singapore, 1991 to 1998. Annales Allergy Asthma Immunologie, 90, 51–55.Google Scholar
  34. Schwartz, J., Spix, C., Touloumi, G., et al. (1996). Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions. Journal Epidemiology Community Health, 50[Suppl 1], S3–11.CrossRefGoogle Scholar
  35. Soriano, J. B., Kiri, V. A., Maier, W. C. et al. (2003). Increasing prevalence of asthma in K primary care during 1990s. International Journal of Tuberculosis Lung Disease, 7, 415–421.Google Scholar
  36. Stieb, D. M., Beveridge, R. C., Brook, J. R., et al. (2000). Journal Exposure Annales Environmental Epidemiology, 10, 461–477.Google Scholar
  37. Subiza, J., Cabrera, M., Valdivieso, R., et al. (1994). Seasonal asthma caused by airborne platanus pollen. Clinical Experimental Allergy, 24, 1123–1129.Google Scholar
  38. Subiza, J., Jerez, M., Jiménez, J. A., et al. (1995). Allergenic pollen and pollinosis in Madrid. Journal Allergy Clinical Immunology, 96, 15–23.CrossRefGoogle Scholar
  39. Thurston, G. D., Ito, K., & Kinney, P. L. (1992). A multi-year study of air pollution and respiratory hospital admissions in three New York State metropolitan areas: Results for 1988 and 1989 summers. Journal Exposure Annales Environmental Epidemiology, 2, 429–450.Google Scholar
  40. Tobías, A., Díaz, J., Sáez, M., et al. (2001). Use of Poisson regression and Box-Jenkins models to evaluate the short-term effects of environmental noise levels on daily emergency admissions in Madrid, Spain. European Journal of Epidemiology, 151, 50–56.Google Scholar
  41. Tobías, A., Galán, I., & Banegas, J. R. (2003). Short-term effects of airborne pollen concentrations on asthma epidemic. Thorax, 58, 708–710.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Julio Díaz
    • 1
    Email author
  • Cristina Linares
    • 1
  • Aurelio Tobías
    • 2
  1. 1.Asesor/a de la FUAM para el Dpto. de Educación para el Desarrollo Sostenible delAyuntamiento de MadridMadridSpain
  2. 2.Instituto de Salud Carlos III, Escuela Nacional de SanidadMadridSpain

Personalised recommendations