, Volume 23, Issue 1, pp 79–87 | Cite as

Dispersion of the bio-aerosol produced by the oak processionary moth

  • Lisa FenkEmail author
  • Bernhard Vogel
  • Helmuth Horvath
Original Paper


The oak processionary moth (Thaumetopoea processionea L.) is found in oak forests in most European countries. The caterpillars bear urticating hairs (setae) as a chemical defence. These hairs break off and are small enough to become airborne and be transported by the wind. Upon contact with humans the toxin can cause an allergic reaction that ranges from a skin rash to respiratory distress. In order to measure the terminal settling velocity of this bioaerosol, we used a small elutriator and tested its functionality with particles of known aerodynamic diameter. We determined that the mean settling velocity of the setae is about 1 cm/s, corresponding to an aerodynamic diameter of 19 μm for setae with a diameter of 6 μm and a length of 190 μm. The dispersion of the hairs in the atmosphere for a typical summer day was calculated by means of an Eulerian model. The results of this calculation revealed that the maximum concentrations in the atmosphere on a typical summer day reach 20–30% of the concentration found directly at the source. Those maximum concentrations are reached at a distance from the source that varies between 174 and 562 m, depending on the atmospheric stability and the settling velocity.


Airborne disease Atmospheric dispersion Bio-aerosol Oak processionary moth 


  1. Adrian, G., & Fiedler, F. (1991). Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Contributions to Atmospheric Physics, 64, 27–48.Google Scholar
  2. Baron, P. A. (1993). Measurement of asbestos and other fibers, aerosol measurement: Principles, techniques, and applications (pp. 560–590) New York: Van Nostrand Reinhold.Google Scholar
  3. Cox, R. G. (1970). The motion of long slender bodies in a viscous fluid 1: General theory. Journal of Fluid Mechanics, 44, 791–810.CrossRefGoogle Scholar
  4. Ducombs, G., Lamy, M., Bergaud, J.-J., Tamisier, J.-M., Gervais, C., & Texier, L. (1979). La chenille processionnaire (Thaumetopoea pityocampa Schiff. Lépidoptéres) et l’homme: Étude morphologique de l’appareil urticant. Enquête épidémiologique. Annales de Dermatologie et de Vénéréologie, 106, 769–778.Google Scholar
  5. Gäbler, H. (1954). Die Prozessionsspinner. (Wittenberg Lutherstadt: A. Ziemsen Verlag), 3–7, 29–37.Google Scholar
  6. Goldsmith, L., & Baden, H. (1970). The mechanical properties of hair. I. The dynamic sonic modulus. Journal of Investigative Dermatology, 55, 256–259.CrossRefGoogle Scholar
  7. Hammer, M.-U., Vogel, B., & Vogel, H. (2002). Findings on H 2 O 2/HNO 3 as an indicator for ozone sensitivity in Baden-Württemberg. Berlin-Brandenburg and the Po valley based on numerical simulations. Journal of Geophysical Research, 107, 8190. doi:10.1029/2000JD000211.CrossRefGoogle Scholar
  8. Helbig, N., Vogel, B., Vogel, H., & F. Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3–19.CrossRefGoogle Scholar
  9. Hesler, L. S., Logan, T. M., Benenson, M. W., & Moser, C. (1999). Acute dermatitis from oak processionary caterpillars in a U.S. military community in Germany. Military Medicine, 164, 767–770.Google Scholar
  10. Lamy, M., Novak, F., Duboscq, M. F., Ducombs, G., & Maleville, J. (1988). La chenille processionnaire du chêne (Thaumetopoea processionea L.) et l’homme: Appareil urticant et mode d’action. Annales de Dermatologie Et De Vénéréologie, 115, 1023–1032.Google Scholar
  11. Lenz, C.-J. (1996). Energieumsetzungen an der Erdoberfläche in gegliedertem Gelände. Germany: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe (TH).Google Scholar
  12. Maier, H., Spiegel, W., Kinaciyan, T., Krehan, H., Cabaj, A., Schopf, A., & Hönigsmann, H. (2003). Contact Dermatitis and Allergy: The oak processionary caterpillar as the cause of an epidemic airborne disease: Survey and analysis. British Journal of Dermatology, 149, 990–997.CrossRefGoogle Scholar
  13. Maksymov, J. K. (1978). Thaumetopoeidae, Prozessionspinner. In W. Schwenke (Ed.), Die Forstschädlinge Europas. (pp. 391–404). Hamburg and Berlin: Verlag Paul Parey).Google Scholar
  14. Nester, K., Panitz, H.-J., & Fiedler, F. (1995). Comparison of the DRAIS and EURAD model simulations of air pollution in a mesoscale area. Meteorology and Atmospheric Physics, 57, 135–158.CrossRefGoogle Scholar
  15. Riemer, N., Vogel, H., Vogel, B., & Fiedler, F. (2003). Modelling aerosols on the mesoscale-g: Treatment of soot aerosol and its radiative effects. Journal of Geophysics Research, 109, 4601. doi:10.1029/2003JD003448.CrossRefGoogle Scholar
  16. Schädler, G. (1989). Numerische Simulationen zur Wechselwirkung zwischen Landoberflächen und atmosphärischer Grenzschicht. Germany: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe (TH).Google Scholar
  17. Spiegel, W., Maier, H., & Maier, M. (2004). A non-infectious airborne disease. Lancet, 363, 1438.CrossRefGoogle Scholar
  18. Scheidter, F. (1934). Forstentomologische Beiträge. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 44, 223–226, 362–379, 385–423, 497–525.Google Scholar
  19. Tangermann-Dlugi, G., & Fiedler, F. (1983). Numerische Simulation turbulenter Ausbreitungsvorgänge in der atmosphärischen Grenzschicht. Wasserwirtschaft, 73, 411–415.Google Scholar
  20. Vogel, B., Fiedler, F., & Vogel, H. (1995). Influence of topography and biogenic volatile organic compounds emission in the state of Baden-Württemberg on ozone concentrations during episodes of high air temperatures. Journal of Geophysical Research, 100, 22907–22928.CrossRefGoogle Scholar
  21. Vogel, B., Riemer, N., Vogel, H. & Fiedler, F. (1999). Findings on NOy as an indicator for ozone sensitivity based on different numerical simulations. Journal of Geophysical Research, 3605–3620.Google Scholar
  22. Weidner, H. (1937). Beiträge zu einer Monographie der Raupen mit Gifthaaren. Zeitschrift für angewandte Entomologie, 23, 432–484.CrossRefGoogle Scholar
  23. Werno, J., & Lamy, M. (1990). Pollution atmosphèrique d’origine animal: les poils urticants de la chenille processionnaire du pin (Thaumetopoea pityocampa Schiff.). Comptes Rendus de l’Académie des Sciences, Paris, Série III, 310, 325–331.Google Scholar
  24. Werno, J., Lamy, M, & Vincendeau P. (1993). Caterpillar hairs as allergens. Lancet, 342, 936–937Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institut für ExperimentalphysikUniversität WienViennaAustria
  2. 2.Institut für Meteorologie und KlimaforschungForschungszentrum Karlsruhe/Universität KarlsruheKarlsruheGermany

Personalised recommendations