Skip to main content

Advertisement

Log in

Nutrient limitation of primary production in rivers along a land use gradient in the Lake Biwa Basin, Shiga Prefecture, Japan

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Benthic microalgae (BMA) biomass and community structure in freshwater lotic systems are often limited by inorganic nutrient availability. We examined nutrient limitation of benthic algae biomass and community structure using nutrient diffusing substrates in four rivers along a land use gradient in the Lake Biwa basin, Japan. Ambient in-stream nutrient concentrations were correlated to catchment land use, with the highest nitrogen and phosphorus concentrations being found in rivers draining more forested catchments. Nutrient limitation of primary producer biomass and nutrient-driven changes in community structure were evident in all four rivers, regardless of in-stream nutrient concentrations and surrounding land use. BMA biomass (measured as chlorophyll log-response ratio) exhibited the greatest nutrient limitation in rivers with higher in-stream nutrient concentrations. The relationship to catchment land use was less clear, with the highest nutrient limitation being observed in the catchment with moderate amounts of agricultural and forested land use. Nutrient additions resulted in a shift from dominance by Bacillariophyceae (diatoms) to a mixed Bacillariophyceae-Chlorophyceae (chlorophyte) community in all rivers and this shift was most pronounced in the forested catchments. Changes within the diatom community with nutrient additions were also observed, although the shifts in diatom community within a river in response to nutrient additions were much smaller than the differences in diatom community composition among rivers. Diatom taxa classified as highly motile increased with nutrient additions in all rivers. Our results suggest that primary producer community in rivers may be sensitive to nutrient inputs even in areas with elevated nutrient concentrations and catchments dominated by agricultural land use. There is likely widespread nutrient limitation in rivers of Japan, across both in-stream nutrient and land use gradients and any increases in nutrient loading will likely stimulate benthic algal growth. Our findings highlight the importance of looking at both biomass and species composition to assess ecosystem-level impacts of elevated nutrient levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

source: Maximilian Dörrbecker (Chumwa), CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0 > , via Wikimedia Commons; Shiga map source: Flappiefh, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0 > , via Wikimedia Commons)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aizaki M (1978) Seasonal changes in standing crop and production of periphyton in the Tamagawa river. Jpn J Ecol 28:123–134

    Google Scholar 

  • Aizaki M (1979) Growth rates of microorganisms in a periphyton community. Jpn J Limnol 40:10–19

    Article  Google Scholar 

  • Aizali M, Sakamoto K (1988) Relationship between water quality and periphyton biomass in several streams in Japan. Verh Internat Verein Limnol 23:1511–1517

    Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol 35:257–284

    Article  Google Scholar 

  • American Public Health Association (APHA) (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Ateia M, Nasr M, Ikeda A, Okada H, Fujii M, Natsuike M, Yoshimura C (2016) Nonlinear relationship of near-bed velocity and growth of riverbed periphyton. Water. https://doi.org/10.3390/w8100461

    Article  Google Scholar 

  • Azim ME, Asaeda T (2005) Periphyton structure, diversity, and colonization. In Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM (eds) Periphyton: ecology, exploitation, and management, CABI, pp 15–33

  • Baekkelie KAE, Schneifer SC, Hagman CHC, Petrin Z (2017) Effects of flow events and nutrient addition on stream periphyton and macroinvertebrates: an experimental study using flumes. Knowl Manag Aquat. https://doi.org/10.1051/kmae/2017041

    Article  Google Scholar 

  • Beck WS, Rugenski AT, Poff NL (2017) Influence of experimental, environmental, and geographic factors on nutrient-diffusing substrate experiments in running waters. Freshw Biol 62:1667–1680

    Article  CAS  Google Scholar 

  • Beck WS, Markman DW, Olesky IA, Lafferty MH, Poff NL (2019) Seasonal shifts in the importance of bottom-up and top-down factors on steam periphyton community structure. Oikos 128:680–691

    Article  CAS  Google Scholar 

  • Bellinger EG, Sigee DC (2015) Freshwater algae identification, enumeration, and use as bioindicators 2nd edition. Wiley Blackwell, West Sussex, UK

  • Bennett EM, Carpenter SR, Caraco NE (2001) Human impact on erodible phosphorus and eutrophication: a global perspective. Bioscience 51:227–234

    Article  Google Scholar 

  • Biggs BJF, Kilroy C, Lowe RL (1998) Periphyton development in three valley segments of a New Zealand grassland river: test of a habitat matrix conceptual model within a catchment. Arch Hydrobiol 143:147–177

    Article  Google Scholar 

  • Blinn DW, Bailey PC (2001) Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia 466:231–244

    Article  CAS  Google Scholar 

  • Bothwell ML (1989) Phosphorus limited growth dynamics of lotic periphytic diatom communities: areal biomass and cellular growth rate responses. Can J Fish Aquat Sci 46:1293–1301

    Article  Google Scholar 

  • Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  • Brett MT, Müller-Navarra DC, Ballantyne AP, Ravet JL, Goldman CR (2006) Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr 51:2428–2437

    Article  CAS  Google Scholar 

  • Bridgeman TB, Chaffin JD, Kane DD, Conroy JD, Panek SE, Armenio PM (2011) From river to lake: phosphorus partitioning and algal community compositional changes in western Lake Erie. J Great Lakes Res. https://doi.org/10.1016/j.jglr.2011.09.010

    Article  Google Scholar 

  • Burns CW, Brett MT, Schallenberg M (2011) A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshw Biol 56:889–903

    Article  Google Scholar 

  • Camargo JA, Alonson A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  • Canham CD, Pace ML, Weathers KC, McNeil EW, Bedford BL, Murphy L, Quinn S (2012) Nitrogen deposition and lake nitrogen concentrations: a regional analysis of terrestrial controls and aquatic linkages. Ecosphere 3:1–16

    Article  Google Scholar 

  • Carr GM, Chambers PA, Morin A (2005) Periphyton, water quality and land use at multiple spatial scales in Alberta rivers. Can J Fish Aquat Sci 62:1309–1319

    Article  CAS  Google Scholar 

  • Cashman MJ, Wehr JD, Truhn K (2013) Elevated light and nutrients alter the nutritional quality of stream periphyton. Freshw Biol. https://doi.org/10.1111/fwb.12142

    Article  Google Scholar 

  • Chase JW, Benoy GA, Culp JM (2017) Combined effects of nutrient enrichment and inorganic sedimentation on benthic biota in an experimental stream system. Water Qual Res J 52(3):151–165

    Article  CAS  Google Scholar 

  • City of Kusatsu. 2019/20 (2nd year of Reiwa). 6th KUS City Comprehensive Plan. https://www.city.KUS.shiga.jp/shisei/seisaku/sogokeikaku/rokujisoukei/kikaku1201901.files/02-08.pdf

  • Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568

    Article  PubMed  Google Scholar 

  • Conroy JD, Kane DD, Culver DA (2008) Declining Lake Erie ecosystem health-evidence from a multi-year, lake-wide plankton study. In Munawar M. Heath RT (eds) Checking the pulse of Lake Erie, Michigan State University Press, Aquatic Ecosystem Health & Management Society, pp 369–408

  • Corkum LD (1996) Responses of chlorophyll a, organic matter, and macroinvertebrates to nutrient additions in rivers flowing through agricultural and forested land. Arch Hydrobiol 136:391–411

    Article  CAS  Google Scholar 

  • Correll D (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Cross WF, Benstead JP, Rosemond AD, Wallace JB (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–732

    Article  Google Scholar 

  • Denicola DM (1996) Periphyton responses to temperature at different ecological levels. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, California, pp 149–181

    Chapter  Google Scholar 

  • Dent CL, Grimm NB (1999) Spatial heterogeneity of stream water nutrient concentrations over successional time. Ecology 80:2283–2298

    Article  Google Scholar 

  • Dodds WK (1991) Factors associated with dominance of the filamentous green alga Cladophora glomerata. Water Res 25:1325–1332

    Article  CAS  Google Scholar 

  • Dodds WK, Welch EB (2000) Establishing nutrient criteria in streams. J N Am Benthol Soc 19:186–196

    Article  Google Scholar 

  • Dodds WK, Biggs BJF, Lowe RL (1999) Photosynthesis-irradiance patterns in benthic microalgae: Variations as a function of assemblage thickness and community structure. J of Phycol 35:42–53

    Article  Google Scholar 

  • Dodds WK, Smith VH, Lohman K (2002) Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59:865–874

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DW, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fairchild GW, Lowe RL, Richardson WB (1985) Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66:465–472

    Article  CAS  Google Scholar 

  • Feminella JW, Hawkins CP (1995) Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J N Amer Benthol Soc 14:465–509

    Article  Google Scholar 

  • Francoeur SN, Biggs BFJ, Smith RA, Lowe RL (1999) Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. J N Amer Benthol Soc 18:242–260

    Article  Google Scholar 

  • Francouer SN (2001) Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. J N Amer Benthol Soc 20:358–368

    Article  Google Scholar 

  • Gillet ND, Pan Y, Asarian JE, Kann J (2016) Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams. Sci Total Environ 541:1382–1392

    Article  Google Scholar 

  • Gladyshev MI, Sushchik NN, Makhutova ON, Dubovskaya OP, Kravchuck ES, Kalachova GS, Khromechek EB (2010) Correlations between fatty acid composition of seston and zooplankton and effects of environmental parameters in a eutrophic Siberian reservoir. Limnologica 40:343–357

    Article  CAS  Google Scholar 

  • Goyette JO, Bennett EM, Maranger R (2018) Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds. Nat Geosci 11:921–925

  • Greenwood JL, Rosemond AD (2005) Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Can J Fish Aquat Sci 62:2033–2045

    Article  CAS  Google Scholar 

  • Griffith MB, Hill BH, Herlihy AT, Kaufmann PR (2002) Multivariate analysis of periphyton assemblages in relation to environmental gradients in colorado rocky mountain streams. J Phycol 38:83–95

    Article  Google Scholar 

  • Guo F, Kainz MJ, Sheldon F, Bunn SE (2016a) Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia 181:449–462

    Article  PubMed  Google Scholar 

  • Guo F, Kainz MJ, Sheldon F, Bunn SE (2016b) The importance of high-quality algal food sources in stream food webs–current status and future perspectives. Freshw Biol 61:815–831

    Article  CAS  Google Scholar 

  • Hagy JD III, Houghton KA, Beddick DL Jr, James JB, Friedman SD, Devereux R (2020) Quantifying stream periphyton assemblage responses to nutrient amendments with a molecular approach. Freshw Sci 39:292–308

    Article  Google Scholar 

  • Hampton SE, McGowan S, Ozersky T, Virdis SGP, Tuong Thuy V, Spanbauer TL, Kraemer BM, Swann G, Mackay AW, Powers SM, Meyer MF, Labou SG, O’Reilly CM, DiCarlo M, Galloway AWE, Fritz SC (2018) Recent ecological change in ancient lakes. Limnol Oceanogr 63(5):2277–2304. https://doi.org/10.1002/lno.10938

    Article  CAS  Google Scholar 

  • Hawes I (1988) The seasonal dynamics of spirogyra in a shallow, maritime Antarctic lake. Polar Biol 8:429–437

    Article  Google Scholar 

  • Hayakawa A, Shimizu M, Woli KP, Kuramochi K, Hatano R (2006) Evaluating stream water quality through land use analysis in two grassland catchments: Impact of wetlands on stream nitrogen concentration. J Environ Qual 35(2):617–627. https://doi.org/10.2134/jeq2005.0343

    Article  CAS  PubMed  Google Scholar 

  • Hill WR, Harvey BC (1990) Periphyton responses to higher trophic levels and light in a shaded stream. Can J Fish Aquat Sci 12:2307–2314

    Article  Google Scholar 

  • Hill WR, Knight AW (1988) Nutrient and light limitation of algae in two northern California streams. J Ecol 24:125–132

    Google Scholar 

  • Hill BH, Herlihy AT, Kaufman PB, DeCelles SJ, Vander Borgh MA (2003) Assessment of streams of the eastern united states using a periphyton index of biotic integrity. Ecol Indic 2:325–338

    Article  CAS  Google Scholar 

  • Hill WR, Rinchard J, Czesny S (2011) Light, nutrients and the fatty acid composition of stream periphyton. Freshw Biol 56:1825–1836

    Article  CAS  Google Scholar 

  • Hirose H (1977) Illustrations of the Japanese fresh-water algae. Uchidarokuho Publishing Co., Ltd, Tokyo, Japan

    Google Scholar 

  • Hoellein TJ, Arango CP, Zak Y (2011) Spatial variability in nutrient concentration and biofilm nutrient limitation in an urban watershed. Biogeochemistry 106:265–328

    Article  CAS  Google Scholar 

  • Hsieh CH, Ishikawa K, Sakai Y, Ishikawa T, Ichise S, Yamamoto Y, Kuo TC, Park HD, Yamamura N, Kumagi M (2010) Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquat Sci 72:467–483

    Article  CAS  Google Scholar 

  • Hsieh CH, Sakai Y, Ban S, Ishikawa K, Ishikawa T, Ichise S, Yamamura N, Kumagai M (2011) Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa. Biogeosciences 8:1383–1399

    Article  CAS  Google Scholar 

  • Iannino A, Vossahge ATL, Weitere M, Fink P (2020) Taxonomic shift over a phosphorus gradient affects the stoichiometry and fatty acid composition of stream periphyton. J of Phycol 56:1687–1695

    Article  CAS  Google Scholar 

  • Ichinose S, Wakabayashi T (2008) Japanese freshwater plankton illustrated handbook revised edition (in Japanese). Lake Biwa Environmental Research Institute, Otsu, Japan

  • Integrated Planning of Water Resource Quality (2000) Symposium on integration of basin management and applications to decision making and actual environment. Integrated planning of water resource quality. Kyoto University, Otsu, Japan, Department of Environmental Engineering, pp 103–105

    Google Scholar 

  • Irvine RL, Jackson LJ (2006) Spatial variance of nutrient limitation of periphyton in montane, headwater streams (McLeod River, Alberta, Canada). Aquat Ecol 40:337–348

    Article  CAS  Google Scholar 

  • Ishikawa NF, Togashi H, Kato Y, Yoshimura M, Kohmatsu Y, Yoshimizu C, Ogawa NO, Ohte N, Tokuchi N, Ohkouchi N, Tayasu I (2016) Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multiisotopic evidence. Ecology 97:1146–1158

    Article  PubMed  Google Scholar 

  • Johnson LT, Tank JL, Dodds WK (2009) The influence of land use on stream biofilm nutrient limitation across eight North American ecoregions. Can J Fish Aquat Sci 66:1081–1094

    Article  CAS  Google Scholar 

  • Jones NE (2010) Incorporating lakes within the river discontinuum: longitudinal changes in ecological characteristics in stream–lake networks. Can J Fish Aquat Sci 67:1350–1362

    Article  Google Scholar 

  • Katano I, Doi H (2019) Effects of Stream Grazers with Different Functional Traits on the Spatial Heterogeneity of Periphyton Mats. Peer J 7:e6747

    Article  PubMed  PubMed Central  Google Scholar 

  • Katano I, Doi H, Akiko Houki Y, Isobe TO (2007) Changes in periphyton abundance and community structure with the dispersal of a caddisfly grazer, Micrasema quadriloba. Limnology 8(3):219–226. https://doi.org/10.1007/s10201-007-0211-7

    Article  Google Scholar 

  • Kawanabe H (1996) Asian great lakes, especially Lake Biwa. Environ Biol Fish 47:219–223

    Article  Google Scholar 

  • Kazama S, Watanabe K (2018) Estimation of periphyton dynamics in a temperate catchment using a distributed nutrient-runoff model. Ecol Modell 367:1–9

    Article  CAS  Google Scholar 

  • Keck F, Lepori F (2012) Can we predict nutrient limitation in streams and rivers? Freshw Biol 57:1410–1421

    Article  CAS  Google Scholar 

  • Keithan ED, Lowe RL, DeYoe HR (1988) Benthic diatom distribution in a Pennsylvania stream: role of pH and nutrients. J Phycol 24:581–585

    Article  Google Scholar 

  • Kira T, Ide S, Fukada F, Nakamura M (2006) Lake Biwa: experiences and lessons learned brief. LakeNet: http://www.worldlakes.org/uploads/05_Lake_Biwa_27February2006.pdf

  • Kling GW, Kipphut GW, Miller MM, O’Brien J (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497

    Article  Google Scholar 

  • Klose K, Cooper SD, Leydecker AD, Kreitler J (2012) Relationships among catchment land use and concentrations of nutrients, algae, and dissolved oxygen in a southern California river. Freshw Sci 31:908–927

    Article  Google Scholar 

  • Kramer K, Lange-Bertalot H (1986) Susswasserflora von mitteleuropa: bacillariophyceae, part 1. naviculaceae. Spektrum Akademischer Verlag, Heidelberg

  • Kramer K, Lange-Bertalot H (1988) Susswasserflora von mitteleuropa: bacillariophyceae, part 2. epithemiaceae, bacillariophyceae, surirellaceae. Spektrum Akademischer Verlag, Heidelberg

  • Kramer K, Lange-Bertalot H (1991a) Susswasserflora von mitteleuropa: bacillariophyceae, part 3. centrales, fragilariaceae, eunotiaceae, achnanthaceae. Spektrum Akademischer Verlag, Heidelberg

  • Kramer K, Lange-Bertalot H (1991b) Susswasserflora von mitteleuropa: bacillariophyceae, part 4. achnanthaceae. Spektrum Akademischer Verlag, Heidelberg

  • Kramer K, Lange-Bertalot H (2000) Susswasserflora von mitteleuropa: bacillariophyceae, part 5. Spektrum Akademischer Verlag, Heidelberg, English and French translation of keys

    Google Scholar 

  • Lamberti GA, Gregory SV, Ashkenas LR, Li JL, Steinman AD, McIntire CD (1995) Influence of grazer type and abundance on plant-herbivore interactions in streams. Hydrobiologia 306:179–188

    Article  Google Scholar 

  • Lange K, Liess A, Piggott JJ, Townsend CR, Matthaei CD (2011) Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshw Biol 56:264–278

    Article  Google Scholar 

  • Larned ST (2010) A prospectus for periphyton: recent and future ecological research. J North Am Benthol Soc 29:182–206

    Article  Google Scholar 

  • Lobo EA, Katoh K, Aruga Y (1995) Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo metropolitan area, Japan. Freshw Biol 34:191–204

    Article  Google Scholar 

  • Lohman K, Jones JR, Baysinger-Daniel C (1991) Experimental evidence for nitrogen limitation in a northern Ozark stream. J North Am Benthol Soc 10:14–23

    Article  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Lowe RL, Golladay SW, Webster JR (1986) Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. J North Am Benthol Soc 5:221–229

    Article  Google Scholar 

  • Luecke C, MacKinnon P (2008) Landscape effects on growth of age-0 Arctic grayling in tundra streams. Trans Am Fish Soc 137:236–243

    Article  Google Scholar 

  • Marks JC, Lowe RL (1993) Interactive effects of nutrient availability and light levels on the periphyton composition of a large oligotrophic lake. Can J Fish Aquat Sci 50:1270–1278

    Article  Google Scholar 

  • Martin-Creuzburg D, von Elert E (2009) Good food versus bad food: the role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna. Aquat Ecol 43:943–950

    Article  CAS  Google Scholar 

  • Martin-Creuzburg D, Von Elert E, Hoffmann KH (2008) Nutritional constraints at the cyanobacteria-Daphnia magna interface: the role of sterols. Limnol Oceanogr 53:456–468

    Article  Google Scholar 

  • Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39(1):85–96. https://doi.org/10.2134/jeq2009.0108

    Article  CAS  PubMed  Google Scholar 

  • Meybeck M (1998) Man and river interface: multiple impacts on water and particulates chemistry illustrated in the Seine River Basin. Hydrobiologia 373:1–20

    Article  Google Scholar 

  • Molloy JM (1992) Diatom communities along stream longitudinal gradients. Freshw Biol 28:59–69

    Article  Google Scholar 

  • Moreno-Peñarando R (2011) Japan’s urban agriculture: cultivating sustainability and well-being. https://unu.edu/publications/articles/japan-s-urban-agriculture-what-does-the-future-hold.html

  • Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SEG, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Johnson LT, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–206

    Article  CAS  PubMed  Google Scholar 

  • Munn MD, Osborne LL, Wilet MJ (1989) Factors influencing periphyton growth in agricultural streams of central Illinois. Hydrobiologia 174:89–97

    Article  CAS  Google Scholar 

  • Nakano T, Tayasu I, Yamada Y, Hosono T, Igeta A, Hyodo F, Ando A, Saitoh Y, Tanaka T, Wada R, Yachi S (2008) Effects of agriculture on water quality of lake biwa tributaries, Japan. Sci Total Environ 389:132–148

    Article  CAS  PubMed  Google Scholar 

  • Nitzsche KN, Shin K, Kato Y, Kamauchi H, Takano S, Tayasu I (2020) Magnesium and zinc stable isotopes as a new tool to understand Mg and Zn sources in stream food webs. Ecosphere 11:1–20

    Article  Google Scholar 

  • O’Brien PJ, Wehr JD (2010) Periphyton biomass and ecological stoichiometry in streams within and urban to rural land-use gradient. Hydrobiologia 657:89–105

    Article  Google Scholar 

  • Ogura A, Takeda K, Nakatsubo T (2009) Periphyton contribution to nitrogen dynamics in the discharge from a wastewater treatment plant. River Res Appl 25:229–235

    Article  Google Scholar 

  • Ohte N, Tayasu I, Kohzu A, Yoshimizu C, Osaka K, Makabe A, Koba K, Yoshida N, Nagata T (2010) Spatial distribution of nitrate sources of rivers in the Lake Biwa watershed, Japan: Controlling factors revealed by nitrogen and oxygen isotope values: nitrate sources of rivers in the lake biwa watersHED. Water Resour Res. https://doi.org/10.1029/2009WR007871

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Package ‘Vegan’. ISBN 0–387–95457–0

  • Okubo T (2012) Issues for reduction of pollution loads from point and nonpoint sources. In Kawanabe H, Nishino M, Maehata M (eds) Lake Biwa: interactions between nature and people Springer, Dordrecht, pp 433–440

  • Olesky IA, Baron JS, Beck WS (2021) Nutrients and warming alter mountain lake benthic algal structure and function. Freshw Sci 401:88–102

    Google Scholar 

  • Ozersky T, Volkova EA, Bondarenko NA, Timoshikin OA, Malnik VV, Domysheva VM, Hampton SE (2018) Nutrient limitation of benthic algae in lake baikal, Russia. Freshw Sci. https://doi.org/10.1086/699408

    Article  Google Scholar 

  • Pan Y, Herlihy A, Kaufmann P, Wigington J, Van Sickle J, Moser T (2004) Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: a multi-spatial scale assessment. Hydrobiologia 515:59–73

    Article  Google Scholar 

  • Passy SI (2007) Differential cell size optimization strategies produce distinct diatom richness–body size relationships in stream benthos and plankton. J Ecol 95:745–754

    Article  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Ann Rev Ecol Evol Syst 32:333–365

    Article  Google Scholar 

  • Ponader KC, Charles DF, Belton TJ, Winter DM (2008) Total phosphorus inference models and indices for coastal plains streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610:139–152

    Article  CAS  Google Scholar 

  • Powers SM, Zhang F (2016) Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat Geosci. https://doi.org/10.1038/NGEO2693

    Article  Google Scholar 

  • Pringle CM (1987) Effects of water and substratum nutrient supplies on lotic periphyton growth: an integrated bioassay. Can J Fish Aquat Sci 44:619–629

    Article  CAS  Google Scholar 

  • Pringle CM (1990) Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71:905–920

    Article  Google Scholar 

  • Pringle CM, Bowers JA (1984) An in situ substratum fertilization technique: diatom colonization on nutrient-enriched, sand substrata. Can J Fish Aquat Sci 41:1247–1251

    Article  CAS  Google Scholar 

  • Pringle CM, Paaby-Hansen P, Vaux PD, Goldman CR (1986) In situ nutrient assays of periphyton growth in a Lowland Costa Rican stream. Hydrobiologia 134:207–213

    Article  CAS  Google Scholar 

  • Reisinger AJ, Tank JL, Dee MM (2016) Regional and seasonal variation in nutrient limitation of river biofilms. Freshw Sci 35:474–489

    Article  Google Scholar 

  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2018) Package ‘MASS’. http://www.stats.ox.ac.uk/pub/MASS4/

  • Rosemarin AS (1983) Direct examination of growing filaments to determine phosphate growth kinetics in Cladophora glomerata (L.) Kutz and Stigeoclonium tenue (Agardh) Kutz. In: Wetzel DG (ed) Periphyton of freshwater ecosystems, Dr. W. Junk Publishers, Netherlands, pp 111–119

  • Rossiter A (2000) Lake Biwa as a topical ancient lake. Adv Ecol Res 31:571–598

    Article  Google Scholar 

  • Sadro S, Nelson CE, Melack JM (2012) The influence of landscape position and catchment characteristics on aquatic biogeochemistry in high-elevation lake-chains. Ecosystems 15:363–386

    Article  CAS  Google Scholar 

  • Sanderson BL, Coe HJ, Tran CD, Macneale KH, Harstad DL, Goodwin AB (2009) Nutrient limitation of periphyton in Idaho streams: results from nutrient diffusing substrate experiments. J North Am Benthol Soc 28:832–845

    Article  Google Scholar 

  • Scott JT, Lang DA, King RS, Doyle RD (2009) Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: evidence for differential nutrient limitation in stream periphyton. J North Am Benthol Soc 28:57–68

    Article  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  PubMed  Google Scholar 

  • Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351–800

    Article  CAS  Google Scholar 

  • Sonoda K, Yeakley JA, Walker CE (2001) Near-stream landuse effects on streamwater nutrient distribution in an urban watershed. J Am Water Resour Assoc 37:1517–1532

    Article  CAS  Google Scholar 

  • Squires LE, Ruthford SR, Brotherson DJ (1979) Algal response to a thermal effluent: study of a power station on the Provo River, Utah, USA. Hydrobiol 63:1011–1017

    Article  Google Scholar 

  • Steinman AD (1992) Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream? Oecologia 91:163–170

    Article  PubMed  Google Scholar 

  • Steinman AD, McIntire CD (1986) Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J Phyc 22:352–361

    Article  Google Scholar 

  • Stelzer RS, Lamberti GA (2001) Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanogr 46:356–367

    Article  Google Scholar 

  • Stevenson RJ, Rier ST, Riseng CM, Schultz RE, Wiley MJ (2006) Comparing effects of nutrients on algal biomass in streams in two regions with different disturbance regimes and with applications for developing nutrient criteria. Hydrobiologia 561:149–165

    Article  CAS  Google Scholar 

  • Stockner JG, Shortreed KRS (1976) Autotrophic production in carnation Creek, a coastal rainforest stream Vancouver Island, British Columbia. J Fish Res Board Can 33:1533–1563

    Article  Google Scholar 

  • Tabuchi T, Yoshino K, Shimura M, Kuroda S, Ishikawa M, Yamaji E (1995) Relation between land use and nitrate concentration of outflow water from watersheds of agricultural and forest areas (Japanese with English summary). Jpn Soc Irrig Drain Reclam Eng 178:129–135

    Google Scholar 

  • Taipale S, Strandberg U, peltomaa E, Galloway AWE, Ojala A, Brett MT, (2013) Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 streains of microalgae in 22 genera and in seven classes. Aquat Microb Ecol 71:165–178

    Article  Google Scholar 

  • Tanaka T. (1975) On the eutrophication of the river in or near urbanized areas (1) the effect of waste waters on the primary production in river bed (in Japanese) Water Purification and Liquid Wastes Treatment 16:345–349

  • Tank JL, Dodds WK (2003) Nutrient limitation of epilithic and epixylic biofilms in 10 North American streams. Freshw Biol 48:1031–1049

    Article  CAS  Google Scholar 

  • Tank JL, Reisinger AJ, Rosi E (2017) Nutrient limitation and uptake. In: Lamberti GA, Hauer FR (eds) Methods in Stream Ecology, vol 2. Ecosystem Function. Academic Press, London, pp 147–171

    Chapter  Google Scholar 

  • Taylor SL, Roberts SC, Walsh CJ, Hatt BE (2004) Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management. Freshw Biol 49:835–851

    Article  CAS  Google Scholar 

  • Tezuka Y, Watanabe Y, Hayashi H (1974) Changes in the standing crop of sessile microbes caused by organic pollution of the Tamagawa river. Jpn J Ecol 24:43–49

    Google Scholar 

  • Timoshkin OA, Bondarenko NA, Volkova EA, Tomberg IV, Vishnyakov VS, Malnik VV (2014) Mass development of filamentous algae of genera Spirogyra and Stigeoclonium (Chlorophyta) in the coastal zone of southern Baikal. Hydrobiol J 50:13–23

    Google Scholar 

  • Toda H, Uemura Y, Okino T, Kawanishi T, Kawashima H (2002) Use of nitrogen stable isotope ratio of periphyton for monitoring nitrogen sources in a river system. Water Sci and Technol 11–12:431–435

    Article  Google Scholar 

  • Tromboni F, Lourenço-Amorim C, Neres-Lima V, Thomas SA, Silva-Araújo M, Feijó-Lima R, Silva-Júnior EF, Heatherly T II, Moulton TP, Zandonà E (2019) Conversion of tropical forests to agriculture alters the accrual, stoichiometry, nutrient limitation, and taxonomic composition of stream periphyton. Int Rev Hydrobiol 104:116–126

    Article  CAS  Google Scholar 

  • Tsugeki NK, Urabe J, Hayami Y, Kuwae M, Nakanishi M (2010) Phytoplankton dynamics in Lake Biwa during the 20th century: complex responses to climate variation and changes in nutrient status. J Paleolimnol 44:69–83

    Article  Google Scholar 

  • Tyree MA, Carlisle DM, Spaulding SA (2020) Diatom enumeration method influences biological assessments of southeastern USA streams. Freshw Sci 39:183–195

    Article  Google Scholar 

  • Uemura Y (2012) Geomorphology of Lake Biwa and the surrounding region. In Kawanabe H, Nishino M, Maehata M (eds) Lake Biwa: interactions between nature and people Springer. Dordrecht, pp 3–8

  • Walker CE, Pan Y (2006) Using diatom assemblages to assess urban stream conditions. Hydrobiologia 561:179–189

    Article  CAS  Google Scholar 

  • Watanabe Y, Nishie K, Sakurai M (1975) Production of organic matter by sessile microbes in rivers (In Japanese). Journal of Water Waste 17:685–692

    CAS  Google Scholar 

  • Watanabe T, Asai K, Houki A, Tanaka S, Hizuka T (1986) Saprophilous and eurysaprobic diatom taxa to organic water pollution and Diatom Assemblage Index (DAIpo). Diatom 2:23–73

    Google Scholar 

  • Wehr J, Sheath R, Kociolek P (2002) Freshwater algae of North America. Academic Press, California, USA

    Google Scholar 

  • Wickham H (2009) ggplot2 elegant graphics for data analysis. Springer, New York. https://doi.org/10.1007/978-0-387-98141-3

    Book  Google Scholar 

  • Winterbourn MJ (1990) Interactions among nutrients, algae and invertebrates in a New Zealand mountain stream. Freshw Biol 23:463–474

    Article  CAS  Google Scholar 

  • Wold AP, Hershey AE (1999) Spatial temporal variability of nutrient limitation in 6 north shore tributaries to Lake Superior. J North Am Benthol Soc 18:2–14

    Article  Google Scholar 

  • Woli KP, Hayakawa A, Kuramochi K, Hatano R (2008) Assessment of river water quality during snowmelt and base flow periods in two catchment areas with different land use. Environ Monit Assess 137:251–260

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Kumar D, Singh RS, Pandey LK, Rai J (2018) Seasonal variations in response of periphytic algal community to nutrient enrichment in the river Ganga (Varanasi, India). Annales de Limnologie–International Journal of Limnology. https://doi.org/10.1051/limn/2018025

  • Yamada H, Nakamura F (2002) Effects of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, northern Japan. River Res Appl 18:481–493

    Article  Google Scholar 

  • Yamamoto K (2014) GIS-based urbanization prediction model considering neighborhood relationship of the unit of the “block” in the outskirts of metropolitan area. Int J Geogr Inf Syst 6:330–344

    Google Scholar 

  • Yoda M (2012) History of the relationship between people and Lake Biwa. In: Kawanabe Hiroya, Nishino Machiko, Maehata Masayoshi (eds) Lake Biwa: interactions between nature and people. Springer Netherlands, Dordrecht, pp 239–307. https://doi.org/10.1007/978-94-007-1783-1_4

    Chapter  Google Scholar 

  • Yoshikawa K (2004) On the progress of river restoration and the future view in Japan and Asia. In Geres D (ed) Third European Conference on River Restoration, Zagreb, Croatia, 17–21 May 2004. pp 43–55

  • Yoshimura C, Omura T, Furumai H, Tockner K (2005) Present state of rivers and streams in Japan. River Res Appl 21:93–112

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by a visiting researcher grant to C. L. Weilhoefer from Kyoto University Center for Ecological Research.

Funding

Partial financial support for C. L. Weilhoefer was received from Kyoto University Center for Ecological Research. No additional funding, grants, or support was received by other authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Weilhoefer.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Ted Harris

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weilhoefer, C.L., Nakano, Si., Deb, S. et al. Nutrient limitation of primary production in rivers along a land use gradient in the Lake Biwa Basin, Shiga Prefecture, Japan. Aquat Ecol 56, 1177–1203 (2022). https://doi.org/10.1007/s10452-022-09971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-022-09971-9

Keywords

Navigation