Skip to main content
Log in

Population growth, demography and competition studies on Dipleuchlanis propatula (Gosse, 1886) (Rotifera: Euchlanidae)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We tested the effect of different food (Chlorella vulgaris) concentrations on the population growth and demographic variables of Dipleuchlanis propatula. In addition, we also tested the effect of competition from two other zooplankton species (a rotifer Plationus patulus and a ciliate Paramecium sp.). The parthenogenetic eggs of D. propatula carry a gelatinous matrix with a thickness of about 20 µm. Population growth of D. propatula increased with increase in the algal density. Depending on the food availability, the peak abundances of D. propatula varied from 9 to 50 ind. ml−1. The rate of population increase, r, varied from 0.18 to 0.23 per day. Food density had a significant effect (p < 0.05, Tukey test) on this variable too. In spite of higher peak densities observed at high food levels, the r values were not very different; this was due to the long lag phase before the population increased. Dipleuchlanis propatula growth was lower due to competition from ciliates. Food density had no significant effect on the average life span, which varied from 5 to 7 days. However, both gross and net reproductive rates increased with increase in algal food. These results show that D. propatula had growth patterns similar to other members of the family Euchlanidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request by the authors.

References

  • Allan JD (1976) Life history patterns in zooplankton. Am Nat 110:165–180

    Article  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, London

    Google Scholar 

  • Cheng SH, Shigeru A, Maeda M, Hino A (2004) Competition between the rotifer Brachionus rotundiformis and the ciliate Euplotes vannus fed on two different algae. Aquaculture 241:331–343

    Article  Google Scholar 

  • Dumont HJ, Sarma SSS, Ali AJ (1995) Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwater Biol 33:39–46

    Article  Google Scholar 

  • Ejsmont-Karabin J (2012) The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Polish J Ecol 60:339–350

    Google Scholar 

  • Ejsmont-Karabin J, Karpowicz M (2021) Rotifera in lake subhabitats. Aquat Ecol. https://doi.org/10.1007/s10452-020-09818-1(thisvolume)

    Article  Google Scholar 

  • Espinosa-Rodríguez CA, Sarma SSS, Nandini S (2012) Interactions between the rotifer Euchlanis dilatata and the cladocerans Alona glabra and Macrothrix triserialis in relation to diet type. Limnologica 42:50–55

    Article  Google Scholar 

  • Gaytan-Herrera ML, Cuna-Perez E, Ramírez-García P (2017) Annual phytoplankton dynamics in La Antigua River Mexico. J Environ Biol 38(6):1197–1203

    Article  CAS  Google Scholar 

  • Gilbert JJ (1976) Polymorphism in the rotifer Asplanchna sieboldi: biomass, growth and reproductive rate of the saccate and campanulate morphotypes. Ecology 57:542–551

    Article  Google Scholar 

  • Gilbert JJ (1988) Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol Oceanogr 33:1286–1303

    Article  Google Scholar 

  • Gulati RD, Rooth J, Ejsmont-Karabin J (1987) A laboratory study of feeding and assimilation in Euchlanis dilatata lucksiana. Hydrobiologia 147:289–296. https://doi.org/10.1007/BF00025756

    Article  Google Scholar 

  • Halbach U (1973) Life table data and population dynamics of the rotifer Brachionus calyciflorus Pallas as influenced by periodically oscillating temperature. In: Wieser W (ed) Effects of temperature on ectothermic organisms. Springer, Berlin, pp 217–228 https://doi.org/10.1007/978-3-642-65703-0_19

  • Hoff FH, Snell TW (2007) Plankton Culture Manual, Sixth Edition. Florida Aqua Farms, Dade City, Florida

  • Jiménez-Santos MA, Sarma SSS, Nandini S (2019) Temperature-dependent demographic differences in sessile rotifers of the genus Limnias (Rotifera: Gnesiotrocha). J Environ Biol 40(4):711–718

    Article  Google Scholar 

  • King CE (1970) Comparative survivorship and fecundity of mictic and amictic female rotifers. Physiol Biochem Zool 43:206–212

    Google Scholar 

  • Krebs CJ (1985) Ecology; the experimental analysis of distribution and abundance, 3rd edn. Harper & Row, New York

    Google Scholar 

  • Lucía-Pavón E, Sarma SSS, Nandini S (2001) Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev Biol Trop 49:895–902

    PubMed  Google Scholar 

  • Martínez-Martínez M, Medina Nava M, Hernández Morales R (2018) Ecological interactions between the phytoplankton and the periphyton in the Cuitzeo Lake. Rev. Latinoam. Ambient. Cienc. 9:757–773

    Google Scholar 

  • Moreno-Gutiérrez RM, Sarma SSS, Sobrino-Figueroa AS, Nandini S (2018) Population growth potential of rotifers from a high altitude eutrophic waterbody, Madín reservoir (State of Mexico, Mexico): The importance of seasonal sampling. J Limnol 77:441–451. https://doi.org/10.4081/jlimnol.2018.1823

    Article  Google Scholar 

  • Nandini S, Sarma SSS (2002) Competition between the rotifers Brachionus patulus and Euchlanis dilatata: effect of algal food concentration and relative initial densities of competing species. Russ J Ecol 33:291–295

    Article  Google Scholar 

  • Nandini S, Sarma SSS (2005) Life history characteristics of Asplanchnopus multiceps (Rotifera) fed rotifer and cladoceran prey. Hydrobiologia 546:491–501

    Article  Google Scholar 

  • Nandini S, Sarma SSS (2019) Adaptive toe morphology of Euchlanis cf mikropous Koch-Althaus, 1962 (Rotifera: Euchlanidae) exposed directly and indirectly to invertebrate predators. Limnologica 78:125693

    Article  Google Scholar 

  • Nandini S, Sarma SSS, Hurtado-Bocanegra MD (2002) Effect of four species of cladocerans (Crustacea) on the population growth of Brachionus patulus (Rotifera). Acta Hydrochim Et Hydrobiol 30:101–107

    Article  CAS  Google Scholar 

  • Nandini S, Sarma SSS, Amador-López RJ, Bolaños-Muñoz S (2007) Population growth and body size in five rotifer species in response to variable food concentration. J Freshwater Ecol 22:1–10

    Article  Google Scholar 

  • Nandini S, Sarma SSS, Dumont HJ (2011) Predatory and toxic effects of the turbellerian (Stenostomum cf leucops) on the population dynamics of Euchlanis dilatata, Plationus patulus (Rotifera) and Moina macrocopa (Cladocera). Hydrobiologia 662:171–177

    Article  CAS  Google Scholar 

  • Nandini S, Ramírez-García P, Sarma SSS (2016) Water quality indicators in Lake Xochimilco, Mexico: zooplankton and Vibrio cholerae. J Limnol 75:91–100

    Google Scholar 

  • Nandini S, Sarma SSS, Gulati RD (2017) A seasonal study reveals the occurrence of exotic rotifers in the river Antigua, Veracruz, close to the Gulf of Mexico. River Res Appl 33:970–982

    Article  Google Scholar 

  • Paes, C. R., Faria, G. R., Tinoco, N. A., Castro, D. J., Barbarino, E., & Lourenço, S. O. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Latin American Journal of Aquatic Research44(2), 275–292.

  • Pourriot R (1977) Food and feeding habits of rotifers. Arch Hydrobiol Beih 8:243–260

    Google Scholar 

  • Pourriot R, Snell TW (1983) Resting eggs of rotifers. Hydrobiologia 104:213–224

    Article  Google Scholar 

  • Sánchez Rodríguez MR, Avila LAN, Sarma SSS, Nandini S, Vásquez AL (2010) Allelopathic effects of ciliate (Paramecium caudatum) (Ciliophora) culture filtrate on the population growth of brachionid rotifers (Rotifera: Brachionidae). Allelopath J 26:123–130

    Google Scholar 

  • Sarma SSS, Iyer N, Dumont HJ (1996) Competitive interactions between herbivorous rotifers: importance of food concentration and initial population density. Hydrobiologia 331:1–7

    Article  Google Scholar 

  • Sarma SSS, Jiménez-Santos MA, Nandini S, Wallace RL (2017) Demography of the sessile rotifers, Limnias ceratophylli and Limnias melicerta (Rotifera: Gnesiotrocha), in relation to food (Chlorella vulgaris Beijerinck, 1890) density. Hydrobiologia 796:181–189. https://doi.org/10.1007/s10750-017-3184-5

    Article  CAS  Google Scholar 

  • Sarma SSS, Jiménez-Santos MA, Nandini S, Wallace RL (2020) Review on the ecology and taxonomy of sessile rotifers (Rotifera) with special reference to Mexico. J Environ Biol 41(1):3–12

    Article  Google Scholar 

  • Sarma SSS, Jiménez-Santos MA, Nandini S (2021) Rotifer species diversity in Mexico: an updated checklist. Diversity 13(7): 291–293

    Article  Google Scholar 

  • Serrania-Soto CR, Sarma SSS, Nandini S (2011) Studies on comparative population growth of some species of the rotifer Lecane (Rotifera). J Environ Biol 32(4):523–527

    PubMed  CAS  Google Scholar 

  • Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Philosophical Trans Royal Soc London B357:1153–1170

    Article  Google Scholar 

  • Song MO, Kim W (1992) Three brackish water rotifers from Korea. The Kor J Syst Zoology 8:325–330

    Google Scholar 

  • Stemberger RS, Gilbert JJ (1985) Assessment of threshold food levels and population growth in planktonic rotifers. Arch Hydrobiol Beih Ergebn Limnol 21:269–275

    Google Scholar 

  • Wallace RL, Snell TW (2010) Rotifera. Chapter 8. In: Thorp JH, Rogers DC (eds) Thorp and Covich’s freshwater invertebrates, 3rd edn, pp 173–235. Elsevier, Oxford

  • Wallace RL, Snell TW, Ricci C, Nogrady T (2006). Rotifera: Volume 1 Biology, Ecology and Systematics, 2nd edn. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 23. Kenobi Productions, Ghent, and Backhuys Publishers, Leiden

  • Wallace RL, Walsh EJ, Nandini S, Sarma SSS (2021) A meta-analysis of benthic rotifer community structure as a function of lake trophic state. Aquat Ecol. https://doi.org/10.1007/s10452-020-09825-2(thisvolume)

    Article  Google Scholar 

  • Walsh EJ (1995) Habitat-specific predation susceptibilities of a littoral rotifer to two invertebrate predators. Hydrobiologia 313\314:205–211

  • Weber CI (1993) Method for measuring the acute toxicity of effluents and receiving waters to freswater and marine organisms, Fourth Edn. Cincinnati, Ohio

Download references

Acknowledgements

The authors thank institutional projects (PAPIIT- IN213413 and IG200820) and CONACYT (SNI-20520 & 18723). We thank Teresa Ramirez Perez for bringing us a plankton sample from the river Antigua during a student field trip. Two anonymous reviewers improved our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nandini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandini, S., Sarma, S.S.S. Population growth, demography and competition studies on Dipleuchlanis propatula (Gosse, 1886) (Rotifera: Euchlanidae). Aquat Ecol 55, 1305–1316 (2021). https://doi.org/10.1007/s10452-021-09883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09883-0

Keywords

Navigation