Threshold concentrations of the road salt for adverse effects on females and resting eggs of cladoceran Moina macrocopa

Abstract

The salinization of freshwaters due to the use of deicing road salts is a serious anthropogenic threat. We investigated the effects of the road deicer, which is mostly composed (ca. 70%) of NaCl, on the life cycle parameters of the cladoceran Moina macrocopa in acute and chronic toxicity tests and on the hatching success of resting eggs exposed to sediments contaminated with the road salt. The negative effects of the road salt on survival and life cycle parameters of animals were observed at concentrations above 5 g L−1. The 6-month exposure of resting eggs to contaminated sediments had a consistent but relatively weak effect on the postexposure hatching of resting eggs. Experiments demonstrated that the concentration of the deicer in the top water layer in the water-sediment systems is more important for the hatching success of resting eggs than the salt content in the sediment. Only 2.2 ± 1.9% of resting eggs hatched when the deicer content in the top water layer was equal to 12 g L−1. Lethal effects on hatchlings were observed starting from the deicer content in the water equal to 1 g L−1, and 97.0 ± 0.8% of hatchlings were dead at the deicer content in the water equal to 5 g L−1. Thus, the resilience of resting eggs to the contaminated sediments can ensure the replenishment of the population from the egg bank after the salinity disturbance is diminished but the negative effects of the elevated salt content in surface waters on active population will be manifested at lower salinities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data, associated metadata, and calculation tools are available from the corresponding author (lopatinats@mail.ru).

References

  1. Alekseev VR, de Stasio BT, Gilbert JJ (2007) Diapause in aquatic invertebrates: theory and human use. Springer, Netherlands

    Book  Google Scholar 

  2. Anishchenko OV, Tolomeev AP, Ivanova EA, Drobotov AV, Kolmakova AA, Zuev IV, Gribovskaya IV (2020) Accumulation of elements by submerged (Stuckenia pectinata (L.) Börner) and emergent (Phragmites australis (Cav.) Trin. ex Steud.) macrophytes under different salinity levels. Plant Physiol. Biochem. 154:328–340. https://doi.org/10.1016/j.plaphy.2020.05.019

    CAS  Article  PubMed  Google Scholar 

  3. Arnott SE, Celis-Salgado MP, Robin E (2020) Road salt impacts freshwater zooplankton at concentrations below current water quality guidelines. Environ Sci Technol 54(15):9398–9407. https://doi.org/10.1021/acs.est.0c02396

    CAS  Article  PubMed  Google Scholar 

  4. Bailey SA, Duggan IC, van Overdijk CDA (2003) Viability of invertebrate diapausing eggs collected from residual ballast sediment. Limnol Oceanogr 48(4):1701–1710. https://doi.org/10.4319/lo.2003.48.4.1701

    Article  Google Scholar 

  5. Bailey SA, Duggan IC, van Overdijk CDA, Johengen TH, Reid DF, MacIsaac HJ (2004) Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshw. Biol 49:286–295. https://doi.org/10.1111/j.1365-2427.2004.01185.x

    Article  Google Scholar 

  6. Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84. https://doi.org/10.1023/A:1024454905119

    Article  Google Scholar 

  7. Cáceres CE (1998) Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79(5):1699–1710. https://doi.org/10.1890/0012-9658(1998)079[1699:IVITAP]2.0.CO;2

    Article  Google Scholar 

  8. Cáceres CE, Tessier AJ (2003) How long to rest: the ecology of optimal dormancy and environmental constraint. Ecology 84:1189–1198. https://doi.org/10.1890/0012-9658(2003)084[1189:HLTRTE]2.0.CO;2

    Article  Google Scholar 

  9. Coldsnow KD, Mattes BM, Hintz WD, Relyea RA (2017) Rapid evolution of tolerance to road salt in zooplankton. Environ. Pollut 222:367–373. https://doi.org/10.1016/j.envpol.2016.12.024

    CAS  Article  PubMed  Google Scholar 

  10. Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD (2010) Fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scale. Environ. Sci. Technol. 44(19):7376–7382. https://doi.org/10.1021/es101333u

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE et al (2017) Salting our freshwater lakes. PNAS 114(17):4453–4458. https://doi.org/10.1073/pnas.1620211114

    CAS  Article  PubMed  Google Scholar 

  12. Galimov YR, Yampolsky LY (1998) Optimal strategies of investment in resting stage production and germination in unpredictable seasonal environments (with 5 figures). Ergebnisse der limnologie 52:313–326

    Google Scholar 

  13. Ginatullina E, Atwell L, Saito L (2017) Resilience and resistance of zooplankton communities to droughtinduced salinity in freshwater and saline lakes of Central Asia. J. Arid Environ. 144:1–11. https://doi.org/10.1016/j.jaridenv.2017.04.010

    Article  Google Scholar 

  14. Godwin KS, Hafner SD, Buff MF (2003) Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ. Pollut. 124:273–281. https://doi.org/10.1016/S0269-7491(02)00481-5

    CAS  Article  PubMed  Google Scholar 

  15. Hairston NG, Hansen AM, Schaffner WR (2000) The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45(2):133–145. https://doi.org/10.1046/j.1365-2427.2000.00386.x

    Article  Google Scholar 

  16. Hintz WD, Relyea RA (2017) A salty landscape of fear: responses of fish and zooplankton to freshwater salinization and predatory stress. Oecologia. 185(1):147–156. https://doi.org/10.1007/s00442-017-3925-1

    Article  PubMed  Google Scholar 

  17. Hintz WD, Jones DK, Relyea RA (2019) Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Philos Trans R Soc Lond B Biol Sci 374(1764):20180012. https://doi.org/10.1098/rstb.2018.0012

    CAS  Article  Google Scholar 

  18. Howard KWF, Maier H (2007) Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area. Canada. J. Contam. Hydrol. 91(1–2):146–170. https://doi.org/10.1016/j.jconhyd.2006.10.005

    CAS  Article  PubMed  Google Scholar 

  19. Iglesias MCA (2020) A review of recent advances and future challenges in freshwater salinization. Limnetica 39(1):185–211. https://doi.org/10.23818/limn.39.13

    Article  Google Scholar 

  20. Jones DK, Mattes BM, Hintz WD, Schuler MS, Stoler AB, Lind LA, Cooper RO, Relyea RA (2017) Investigation of road salts and biotic stressors on freshwater wetland communities. Environ. Pollut. 221:159–167. https://doi.org/10.1016/j.envpol.2016.11.060

    CAS  Article  PubMed  Google Scholar 

  21. Kefford B, Dun Lop J, Nugegoda D, Choy S (2007) Understanding salinity thresholds in freshwater biodiversity: freshwater to saline transition. In: Lovett S, Price P, Edgar B (eds) Salt. Nutrient, Sediment and Interactions, Findings from the National River Contaminants Program. Land & Water Australia, pp 9–28

    Google Scholar 

  22. Khlebovich VV (1974) Critical salinity of biological processes. Nauka Publ, Leningrad

    Google Scholar 

  23. Kotalik CJ, Clements WH, Cadmus P (2017) Effects of magnesium chloride road deicer on montane stream benthic communities. Hydrobiologia. 799(5):193–202. https://doi.org/10.1007/s10750-017-3212-5

    CAS  Article  Google Scholar 

  24. Martínez-Jerónimo F, Martínez-Jerónimo L (2007) Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotoxicol. Environ. Saf. 67(3):411–6. https://doi.org/10.1016/j.ecoenv.2006.08.009

    CAS  Article  PubMed  Google Scholar 

  25. Meter RJV, Swan ChM, Leips J, Snodgrass JW (2011) Road salt stress induces novel food web structure and interactions. Wetlands 31(5):843–851. https://doi.org/10.1007/s13157-011-0199-y

    Article  Google Scholar 

  26. Nielsen DL, Smith D, Petrie R (2012) Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshw. Biol. 57(6):1306–1314. https://doi.org/10.1111/j.1365-2427.2012.02782.x

    Article  Google Scholar 

  27. OCDE/GD (92)170 (1993) Environment monographs. No. 60. Report of the OECD workshop on effects assessment of chemicals in sediment

  28. OECD Guideline for testing of chemicals 207 (1984) Earthworm, acute toxicity tests

  29. OECD Guidelines for the testing of chemicals 218 (2004) Sediment-water chironomid toxicity test using spiked sediment

  30. Oskina N, Lopatina T, Anishchenko O, Zadereev E (2019) High resistance of resting eggs of cladoceran Moina macrocopa to the effect of heavy metals. Bull Environ Contam Toxicol 102(3):335–340. https://doi.org/10.1007/s00128-018-2473-7

    CAS  Article  PubMed  Google Scholar 

  31. Ramakrishna DM, Viraraghavan T (2005) Environmental impact of chemical deicers—a review. Water Air Soil Pollut 166:49–63. https://doi.org/10.1007/s11270-005-8265-9

    CAS  Article  Google Scholar 

  32. Rasdi NW, Suhaimi H, Hagiwara A, Ikhwanuddin M, Ghaffar MA, Yuslan A, Najuwa S (2019) Effect of different salinities gradient on fatty acid composition, growth, survival and reproductive performance of Moina macrocopa (Straus 1820) (Crustacea, Cladocera). Preprints (www.preprints.org) https://doi.org/https://doi.org/10.20944/preprints201906.0205.v1

  33. Ritz Ch, Streibig JC (2005) Bioassay analysis using R. J Stat Softw. https://doi.org/10.18637/jss.v012.i05

    Article  Google Scholar 

  34. Santangelo JM, Esteves FDA, Manca M, Bozelli RL (2014) Disturbances due to increased salinity and the resilience of zooplankton communities: the potential role of the resting egg bank. Hydrobiologia 722:103–113. https://doi.org/10.1007/s10750-013-1683-6

    Article  Google Scholar 

  35. Sarma SSS, Nandini S, Morales-Ventura J, Delgado-Martinez I, Gonzalez-Valverde L (2006) Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquat Ecol 40:349–360. https://doi.org/10.1007/s10452-006-9039-1

    CAS  Article  Google Scholar 

  36. Schuler MS, Hintz WD, Jones DK, Lind LA, Mattes BM, Stoler AB, Sudol KA, Relyea RA (2017) How common road salts and organic additives alter freshwater food webs: in search of safer alternatives. J Appl Ecol 54(5):1353–1361. https://doi.org/10.1111/1365-2664.12877

    CAS  Article  Google Scholar 

  37. Schuler MS, Cañedo-Argüelles M, Hintz WD, Dyack B, Birk S, Relyea RA (2019) Regulations are needed to protect freshwater ecosystems from salinization. Philos Trans R Soc Lond B Biol Sci 374(1764):20180019. https://doi.org/10.1098/rstb.2018.0019

    CAS  Article  Google Scholar 

  38. Schuytema GS, Nebeker AV, Stutzman TW (1997) Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity test. Arch. Environ. Contam. Toxicol. 33(2):194–198. https://doi.org/10.1007/s002449900242

    CAS  Article  PubMed  Google Scholar 

  39. Technical documentation of the planned economic activity associated with the use of special materials intended for winter and summer maintenance of urban road facilities and civil aviation facilities. Environmental Impact Assessment (2014) Scientific and Production Association “Institute of Ecology and Energy Saving Technologies” LLC: 142.http://ietec.ru/news/228/ Accessed 21 September 2020

  40. Thunqvist EL (2004) Regional increase of mean chloride concentration in water due to the application of deicing salt. Sci Total Environ 325(1–3):29–37. https://doi.org/10.1016/j.scitotenv.2003.11.020

    CAS  Article  PubMed  Google Scholar 

  41. Velasco J, Gutie´rrez-Ca´novas C, Botella-Cruz M, Sa´nchez-Ferna´ndez D, Arribas P, Carbonell JA, Milla´n A, Pallare´s S (2019) Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2018.0011

    Article  Google Scholar 

  42. Zadereev ES, Gubanov VG (1996) The role of population density in gametogenesis induction in Moina macrocopa (Cladocera: Crustacea). Zhurnal Obshch Biol 57:360–367

    Google Scholar 

  43. Zadereev E, Lopatina T, Oskina N, Zotina T, Petrichenkov M, Dementyev D (2017) Gamma irradiation of resting eggs of Moina macrocopa affects individual and population performance of hatchlings. J. Environ. Radioact 175–176:126–134. https://doi.org/10.1016/j.jenvrad.2017.05.002

    CAS  Article  PubMed  Google Scholar 

  44. Zadereev E, Lipka O, Karimov B, Krylenko M, Elias V, PintoI S, Alizade V, Anker Y, Feest A, Kuznetsova D, Mader A, Salimov R, Fischer M (2020) Overview of past, current and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia. Inland Waters. 10(4):438–452. https://doi.org/10.1080/20442041.2020.1772034

    CAS  Article  Google Scholar 

  45. Zhang Y, Sun T, Li F, Wang J, Oh K (2013) Effect of decing salts on ion concentrations in urban stormwater runoff. Procedia Environ. Sci. 18:567–571. https://doi.org/10.1016/j.proenv.2013.04.076

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The reported study was funded by the Russian Foundation for Basic Research, the Krasnoyarsk Krai Government, and the Krasnoyarsk Regional Fund for supporting scientific and technical activities, project number 19-44-240014. We are grateful to two anonymous reviewers for the valuable comments and suggestions and to Elena Krasova for linguistic check and improvements.

Funding

The reported study was funded by Russian Foundation for Basic Research, the Krasnoyarsk Krai Government, and the Krasnoyarsk Regional Fund for supporting scientific and technical activities, project number 19-44-240014.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatiana Lopatina.

Ethics declarations

Conflicts of interest

All the authors declare that there is no conflict of interests. All the authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed

Code availability All used packages and used tools have been cited in the manuscript, and there is no specific code for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopatina, T., Anishchenko, O., Oskina, N. et al. Threshold concentrations of the road salt for adverse effects on females and resting eggs of cladoceran Moina macrocopa. Aquat Ecol 55, 283–297 (2021). https://doi.org/10.1007/s10452-021-09830-z

Download citation

Keywords

  • Cladocera
  • Resting eggs
  • Road salt
  • Salinity
  • Aquatic ecosystems