Unraveling the role of environmental factors and dispersal capacity in a metacommunity of Amazonian stream fishes

Abstract

Separating species in terms of dispersal capacity can be useful to understand how local and regional factors affect the distribution of organisms in metacommunities. In this study, we sought to unravel how the characteristics of local habitats and spatial distances structure fish communities in Amazonian streams. We hypothesized that fishes classified with high dispersal capacity are mainly structured by mass effects and respond to environmental and spatial variables in the same proportion, while fishes classified with low dispersal capacity are mainly structured by species sorting, responding mainly to local environmental variables. We collected fish from 36 well-preserved streams in the Capim river basin in northern Brazil during the dry season. In general, the community composition was structured by characteristics of the local habitat. Spatial variables influenced each group at different intensities, agreeing with the models of species sorting and mass effects and corroborating our hypotheses. Thus, our findings suggest that the dispersal mode affects how metacommunities are structured. The differences in the patterns observed between the groups compared can help in the management and conservation of species, such as those with greater environmental requirements and more susceptible to habitat changes. We emphasize the need to maintain habitat integrity and connectivity in headwater streams to conserve species in their habitats.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alahuhta J, Lindholm M, Bove CP et al (2018) Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia 188(4):1167–1182. https://doi.org/10.1007/s00442-018-4294-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Algarte VM, Rodrigues L, Landeiro VL et al (2014) Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722:279–290. https://doi.org/10.1007/s10750-013-1711-6

    Article  Google Scholar 

  3. Benone NL, Ligeiro R, Juen L, Montag LFA (2018) Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Mar Freshw Res 69(2):243–252. https://doi.org/10.1071/MF17103

    Article  Google Scholar 

  4. Bie T, Meester L, Brendonck L et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.x

    Article  PubMed  Google Scholar 

  5. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89(9):2623–2632. https://doi.org/10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  6. Bojsen BH, Barriga R (2002) Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshw Biol 47(11):2246–2260. https://doi.org/10.1046/j.1365-2427.2002.00956.x

    Article  Google Scholar 

  7. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153(1–2):51–68. https://doi.org/10.1016/S0304-3800(01)00501-4

    Article  Google Scholar 

  8. Brejão GL, Gerhard P, Zuanon J (2013) Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon. Neotrop Ichthyol 11(2):361–373. https://doi.org/10.1590/S1679-62252013005000006

    Article  Google Scholar 

  9. Brown B, Swan C (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79:571–580. https://doi.org/10.1111/J.1365-2656.2010.01668.X

    CAS  Article  PubMed  Google Scholar 

  10. Calvão LB, Nogueira DS, de Assis Montag LF et al (2016) Are Odonata communities impacted by conventional or reduced impact logging? For Ecol Manag 382:143–150. https://doi.org/10.1016/j.foreco.2016.10.013

    Article  Google Scholar 

  11. Cantanhêde LG, Luiza-Andrade A, Leão H et al (2020) How does conversion from forest to pasture affect the taxonomic and functional structure of the fish assemblages in Amazonian streams? Ecol Freshw Fish. https://doi.org/10.1111/eff.12589

    Article  Google Scholar 

  12. Carvalho RA, Tejerina-Garro FL (2015) Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams? Ecol Freshw Fish 24:317–328. https://doi.org/10.1111/eff.12152

    Article  Google Scholar 

  13. Castillo-Escrivà A, Aguilar-Alberola JA, Mesquita-Joanes F (2017) Spatial and environmental effects on a rock-pool metacommunity depend on landscape setting and dispersal mode. Freshw Biol 62:1004–1011. https://doi.org/10.1111/fwb.12920

    CAS  Article  Google Scholar 

  14. Cetra M, Petrere Júnior M, Barrella W (2017) Relative influences of environmental and spatial factors on stream fish assemblages in Brazilian Atlantic rainforest. Fish Manag Ecol 24(2):139–145. https://doi.org/10.1111/fme.12207

    Article  Google Scholar 

  15. Chen K, Hughes RM, Brito JG et al (2017) A multi-assemblage, multi-metric biological condition index for eastern Amazonia streams. Ecol Ind 78:48–61. https://doi.org/10.1016/j.ecolind.2017.03.003

    Article  Google Scholar 

  16. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  17. Couto TBA, Aquino PDPU (2011) Structure and integrity of fish assemblages in streams associated to conservation units in Central Brazil. Neotrop Ichthyol 9(2):445–454. https://doi.org/10.1590/S1679-62252011000200023

    Article  Google Scholar 

  18. Datry T, Moya N, Zubieta J, Oberdorff T (2016) Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw Biol 61:1335–1349. https://doi.org/10.1111/fwb.12706

    Article  Google Scholar 

  19. Dray S, Blanchet FG, Legendre P (2013) packfor: forward selection with permutation (Canoco p. 46), version 0.0-8/r109.

  20. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell 196(3–4):483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015

    Article  Google Scholar 

  21. Ferreira MC, Begot TO, da Silveira PB et al (2018) Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams. Environ Biol Fishes 101(4):547–562. https://doi.org/10.1007/s10641-018-0716-4

    Article  Google Scholar 

  22. Göthe E, Baattrup-Pedersen A, Wiberg-Larsen P et al (2017) Environmental and spatial controls of taxonomic versus trait composition of stream biota. Freshw Biol 62:397–413. https://doi.org/10.1111/fwb.12875

    Article  Google Scholar 

  23. Grönroos M, Heino J, Siqueira T et al (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3(13):4473–4487. https://doi.org/10.1002/ece3.834

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88(1):166–178. https://doi.org/10.1111/j.1469-185X.2012.00244.x

    Article  PubMed  Google Scholar 

  25. Heino J, Melo AS, Siqueira T et al (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869. https://doi.org/10.1111/fwb.12533

    Article  Google Scholar 

  26. Heino J, Soininen J, Alahuhta J et al (2017) Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia 183:121–137. https://doi.org/10.1007/s00442-016-3750-y

    Article  PubMed  Google Scholar 

  27. Herrera-R GA, Oberdorff T, Anderson EP et al (2020) The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Glob Change Biol 26(10):5509–5523. https://doi.org/10.1111/gcb.15285

    Article  Google Scholar 

  28. Landeiro VL, Magnusson WE, Melo AS et al (2011) Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshw Biol 56:1184–1192. https://doi.org/10.1111/j.1365-2427.2010.02563.x

    Article  Google Scholar 

  29. Langeani F, Casatti L, Gameiro HS et al (2005) Riffle and pool fish communities in a large stream of southeastern Brazil. Neotrop Ichthyol 3(2):305–311. https://doi.org/10.1590/s1679-62252005000200009

    Article  Google Scholar 

  30. Legendre P, Borcard D, Blanchet F, Dray S (2013) PCNM: MEM spatial eigenfunction and principal coordinate analyses. In: R Packag. version 2.1-2

  31. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129(2):271–280. https://doi.org/10.1007/s004420100716

    Article  Google Scholar 

  32. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  33. Leitão RP, Zuanon J, Mouillot D et al (2018) Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41:219–232. https://doi.org/10.1111/ecog.02845

    Article  PubMed  PubMed Central  Google Scholar 

  34. Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26(9):482–491. https://doi.org/10.1016/j.tree.2011.04.009

    Article  PubMed  Google Scholar 

  35. López-Delgado EO, Winemiller KO, Villa-Navarro FA (2019) Do metacommunity theories explain spatial variation in fish assemblage structure in a pristine tropical river? Freshw Biol 64(2):367–379. https://doi.org/10.1111/fwb.13229

    Article  Google Scholar 

  36. Mendonça FP, Magnusson WE, Zuanon J (2005) Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 4:751–764. https://doi.org/10.1643/0045-8511(2005)005[0751:rbhcaf]2.0.co;2

    Article  Google Scholar 

  37. Mol JHA (2012) The freshwater fishes of Suriname. Fauna Suriname. https://doi.org/10.5860/choice.50-6187

    Article  Google Scholar 

  38. Oksanen J, Blanchet FG, Kindt R et al (2013) Package vegan. Commun Ecol Package 2(9):1–295

    Google Scholar 

  39. Olden JD, Poff NL, Bestgen KR (2008) Trait synergisms and the rarity, extirpation, and extinction risk of desert fishes. Ecology 89(3):847–856. https://doi.org/10.1890/06-1864.1

    Article  PubMed  Google Scholar 

  40. Padial AA, Ceschin F, Declerck SAJ et al (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9(10):e111227. https://doi.org/10.1371/journal.pone.0111227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Pandit SN, Kolasa J, Cottenie K (2009) Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90(8):2253–2262. https://doi.org/10.1890/08-0851.1

    Article  PubMed  Google Scholar 

  42. Peck DV, Herlihy AT, Hill BH, Hughes RM, Kaufmann PR, Klemm DJ, Lazorchak JM, Mccormick FH, Peterson SA, Ringold PL, Magee TK, Cappaer MR (2006) Environmental monitoring and assessment program-surface waters western pilot study: field operation manual for wadeable streams. EPA/620/R-06/003. U.S. Environmental Protection Agency: Washington, DC

  43. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  44. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  PubMed  Google Scholar 

  45. Pérez-Mayorga MA, Casatti L, Teresa FB, Brejão GL (2017) Shared or distinct responses between intermediate and satellite stream fish species in an altered Amazonian River? Environ Biol Fishes 100(12):1527–1541. https://doi.org/10.1007/s10641-017-0663-5

    Article  Google Scholar 

  46. Prudente BS, Pompeu PS, Juen L, Montag LFA (2017) Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshw Biol 62(2):303–316. https://doi.org/10.1111/fwb.12868

    Article  Google Scholar 

  47. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  48. Roa-Fuentes CA, Casatti L (2017) Influence of environmental features at multiple scales and spatial structure on stream fish communities in a tropical agricultural region. J Freshw Ecol 32(1):281–295. https://doi.org/10.1080/02705060.2017.1287129

    Article  Google Scholar 

  49. Rodrigues-Filho CAS, Gurgel-Lourenço RC, Bezerra LAV et al (2018a) How are local fish communities structured in Brazilian semiarid headwater streams? Hydrobiologia 819(1):93–108. https://doi.org/10.1007/s10750-018-3650-8

    Article  Google Scholar 

  50. Rodrigues-Filho CAS, Leitão RP, Zuanon J et al (2018b) Historical stability promoted higher functional specialization and originality in Neotropical stream fish assemblages. J Biogeogr 45(6):1345–1354. https://doi.org/10.1111/jbi.13205

    Article  Google Scholar 

  51. Strahler AN (1953) Revisions of Horton’s quantitative factors in erosional terrain. Trans Am Geophys Union 34:345

    Google Scholar 

  52. Terra BF, Hughes RM, Araújo FG (2016) Fish assemblages in Atlantic Forest streams: the relative influence of local and catchment environments on taxonomic and functional species. Ecol Freshw Fish 25(4):527–544. https://doi.org/10.1111/eff.12231

    Article  Google Scholar 

  53. Thompson R, Townsend C (2006) A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484. https://doi.org/10.1111/j.1365-2656.2006.01068.x

    Article  PubMed  Google Scholar 

  54. Tolonen KT, Cai Y, Vilmi A et al (2018) Environmental filtering and spatial effects on metacommunity organisation differ among littoral macroinvertebrate groups deconstructed by biological traits. Aquat Ecol 52:119–131. https://doi.org/10.1007/s10452-018-9649-4

    Article  Google Scholar 

  55. Van Der Gucht K, Cottenie K, Muylaert K et al (2007) The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci 104(51):20404–20409. https://doi.org/10.1073/pnas.0707200104

    Article  PubMed  Google Scholar 

  56. Van Der Sleen P, Albert JS (2018) Field guide to the fishes of the Amazon, Orinoco, and Guianas, vol 115. Princeton University Press, Princeton

    Google Scholar 

  57. Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da Vegetação Brasileira Adaptada a um Sistema Universal

  58. Veríssimo A, Barreto P, Mattos M et al (1992) Logging impacts and prospects for sustainable forest management in an old Amazonian frontier: the case of Paragominas. For Ecol Manag 55(1–4):169–199. https://doi.org/10.1016/0378-1127(92)90099-U

    Article  Google Scholar 

  59. Vilmi A, Tolonen KT, Karjalainen SM, Heino J (2017) Metacommunity structuring in a highly-connected aquatic system: effects of dispersal, abiotic environment and grazing pressure on microalgal guilds. Hydrobiologia 790:125–140. https://doi.org/10.1007/s10750-016-3024-z

    Article  Google Scholar 

  60. Watrin OS, Rocha AMA (1992) Levantamento de vegetação natural e uso da terra no Município de Paragominas (PA) utilizando imagens TM/Landsat. Belém: EMBRAPA-CPATU. Boletim de Pesquisa

  61. Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000. https://doi.org/10.2307/1941449

    Article  Google Scholar 

  62. Zbinden ZD, Matthews WJ (2017) Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshw Biol 62(8):1460–1471. https://doi.org/10.1111/fwb.12960

    CAS  Article  Google Scholar 

  63. Zuanon J, Medonça FP, Espírito Santo H, Dias MS, Galuch AV, Akama A (2015) Guia de peixes da Reserva Adolpho Ducke. Editora INPA, Manaus

    Google Scholar 

Download references

Acknowledgments

We are grateful to the companies CIKEL Ltda. 33 Forest Capital, and Tropical Forest Institute (IFT) for their financial and logistic support. We thank the foundations Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—(GSP—process 1707307; LFAM—process 88881.119097/2016-01), Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil (CNPq)—(LFAM—process 302406/2019-0), and Ministério da Ciência, Tecnologia, Inovações e Comunicações—Brazil (MCTIC/CNPq)—(NLB—300706/2019-7, 88887.475625/2020-00) for research grants. We also thank researchers Bruno S. Prudente and Gilberto N. Salvador for their help in fish collection and classification.

Author information

Affiliations

Authors

Contributions

GSP wrote the manuscript and performed the experiments and analyses. NLB participated in the fieldwork and species identification and provided textual improvements. RLBS provided corrections and improvements to the manuscript. LFAM originally formulated the idea and provided textual corrections. All authors contributed to the manuscript and gave final approval for publication.

Corresponding author

Correspondence to Giovanni S. Palheta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Sébastien Villeger

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palheta, G.S., Benone, N.L., Santos, R.L.B. et al. Unraveling the role of environmental factors and dispersal capacity in a metacommunity of Amazonian stream fishes. Aquat Ecol 55, 227–236 (2021). https://doi.org/10.1007/s10452-020-09824-3

Download citation

Keywords

  • Species sorting
  • Mass effects
  • Communities
  • Dispersibility
  • Ichthyofauna