From headwaters into the estuarine zone: changes in processes and invertebrate communities in response to abiotic conditions

Abstract

We analysed the relationship between functional and structural variables (leaf litter decomposition, biofilms growth, primary productivity, invertebrate communities’ taxonomic structure, and biological traits) and environmental conditions from headwaters into the estuary, which remains under-investigated. Six river sections (headwaters, middle reach, and four large river sections with increasing salinity) and 18 sites were selected in the Mondego river (Central Portugal). Hypotheses of the expected variations were drawn, based on theory (e.g. River Continuum Concept—RCC) and previous studies. Abiotic conditions were strongly associated with macroinvertebrate communities’ taxonomic composition, but the relationship with functional parameters was different than the predicted one. Decomposition rates were similar from headwaters to the first large river sections (not expected) but increased in the estuarine sections. The high rates of decomposition were associated with the low salinity and especially with the high densities of the shredder Gammarus sp. Biofilm growth rate peaked in intermediate sections and was lower in the headwaters and in the estuary (not expected). The lower algae productivity in the estuary was not compensated by the heterotrophic component of the biofilm. The use of multiple biological traits indicated an unexpected higher functional similarity among the upper river sections, and differences within large river sections (not evident with taxonomic composition). These results show contradictions to widely accepted river concepts, such as the RCC, and highlight the importance of management practices adjusted to each river section to keep the ecosystem functioning. They also increased the knowledge on the transition zone between fresh and estuarine water which is important in the context of mitigation of climate change effects, considering the expected intrusion of saline water upstream.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Available upon request to the authors.

References

  1. Altermatt F, Little CJ, Mächler E, Wang S, Zhang X, Blackman RC (2020) Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129:607–618. https://doi.org/10.1111/oik.06806

    Article  Google Scholar 

  2. Anastácio PM, Marques JC (1996) Crayfish, Procambarus clarkii, effects on initial stages of rice growth in lower Mondego River valley (Portugal). Freshw Crayfish 11:608–617

    Google Scholar 

  3. Angilleta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  4. Bady P, Dolédec S, Dumont B, Fruget J-F (2004) Multiple co-inertia analysis: a tool for assessing synchrony in temporal variability of aquatic communities. Comptes Rendus Biol 327:29–36

    Article  Google Scholar 

  5. Baldy V, Chauvet E, Charcosset J-Y, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–36

    Article  Google Scholar 

  6. Bayo MM, Casas JJ, Cruz-Pizarro L (2005) Decomposition of submerged Phragmites australis leaf litter in two highly eutrophic Mediterranean coastal lagoons: relative contribution of microbial respiration and macroinvertebrate feeding. Arch für Hydrobiol 163:349–367. https://doi.org/10.1127/0003-9136/2005/0163-0349

    CAS  Article  Google Scholar 

  7. Berger E, Frör O, Schäfer RB (2019) Salinity impacts on river ecosystem processes: a critical mini-review. Philos Trans R Soc B 374:20180010. https://doi.org/10.1098/rstb.2018.0010

    CAS  Article  Google Scholar 

  8. Chauvet E (1997) Leaf litter decomposition in large rivers: the case of the river Garonne. Limnetica 13:65–70

    Google Scholar 

  9. Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Article  Google Scholar 

  10. Connolly CT, Sobczak WV, Findlay SEG (2014) Salinity effects on Phragmites decomposition dynamics among the Hudson river’s freshwater tidal wetlands. Wetlands 34:575–582. https://doi.org/10.1007/s13157-014-0526-1

    Article  Google Scholar 

  11. Culp JM, Davies RW (1982) Analysis of longitudinal zonation and the river continuum concept in the Oldman-South Saskatchewan river system. Can J Fish Aquat Sci 39:1258–1266. https://doi.org/10.1139/f82-167

    Article  Google Scholar 

  12. Di Sabatino A, Cristiano G, Pinna M, Lombardo P, Miccoli FP, Marini G, Vignini P, Cicolani B (2014) Structure, functional organization and biological traits of macroinvertebrate assemblages from leaf-bags and benthic samples in a third-order stream of Central Apennines (Italy). Ecol Indic 46:84–91

    Article  Google Scholar 

  13. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–294. https://doi.org/10.1111/j.1365-2427.1994.tb01741.x

    Article  Google Scholar 

  14. Domisch S, Jähnig SC, Haase P (2011) Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshw Biol 56:2009–2020. https://doi.org/10.1111/j.1365-2427.2011.02631.x

    Article  Google Scholar 

  15. Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of the ecological data tables. Ecology 84:3078–3089. https://doi.org/10.1890/03-0178

    Article  Google Scholar 

  16. Duran M (2007) Life cycle of Gammarus pulex (L) in River Yesilirmak. Turk J Zool 31:389–394

    Google Scholar 

  17. Elias CL, Calapez AR, Almeida SFP, Feio MJ (2015) Determining useful benchmarks for the bioassessment of highly disturbed areas based on diatoms. Limnologica 51:83–93. https://doi.org/10.1016/j.limno.2014.12.008

    Article  Google Scholar 

  18. Feio MJ, Reynoldson TB, Ferreira V, Graça MAS (2007) A predictive model for the water quality bioassessment of the Mondego catchment, central Portugal. Hydrobiologia 589:55–68. https://doi.org/10.1007/s10750-006-0720-0

    CAS  Article  Google Scholar 

  19. Feio MJ, Alves T, Boavida M, Medeiros A, Graça MAS (2010) Functional indicators of stream health: a river basin approach. Freshw Biol 55:1050–1065. https://doi.org/10.1111/j.1365-2427.2009.02332.x

    Article  Google Scholar 

  20. Feio MJ, Dolédec S, Graça MAS (2015) Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environ Pollut 196:300–308. https://doi.org/10.1016/j.envpol.2014.09.026

    CAS  Article  PubMed  Google Scholar 

  21. Feio MJ, Almeida SFP, Aguiar FA (2017) Functional associations between microalgae, macrophytes and invertebrates distinguish river types. Aquat Sci 79:909–923. https://doi.org/10.1007/s00027-017-0541-4

    Article  Google Scholar 

  22. Ferreira V, Chauvet E (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Change Biol 17:551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x

    Article  Google Scholar 

  23. Ferreira V, Gulis V, Graça MAS (2017) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729. https://doi.org/10.1007/s00442-006-0478-0

    Article  Google Scholar 

  24. Fuentes-Cid A, Chauvet E, Etcheber H, De-Oliveira E, Sottolichio A, Schmidt S (2015) Leaf litter degradation in highly turbid transitional waters: preliminary results from litter-bag experiments in the Gironde Estuary. Geodin Acta 27:60–66. https://doi.org/10.1080/09853111.2013.877233

    Article  Google Scholar 

  25. Gomes PP, Ferreira V, Tonin AM, Medeiros AO, Gonçalves JF Jr (2018) Combined effects of dissolved nutrients and oxygen on plant litter decomposition and associated fungal communities. Microbiol Aquat Syst 75:854–862. https://doi.org/10.1007/s00248-017-1099-3

    CAS  Article  Google Scholar 

  26. Graça MAS, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolaño F, Wantzen KM, Boyero L (2015) A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1–12

    Article  Google Scholar 

  27. Grubaugh JW, Wallace JB, Houston ES (1996) Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Can J Fish Aquat Sci 53:896–909. https://doi.org/10.1139/f95-247

    Article  Google Scholar 

  28. Guasch H, Martí E, Sabater S (1995) Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshw Biol 33:373–383. https://doi.org/10.1111/j.1365-2427.1995.tb00399.x

    Article  Google Scholar 

  29. Haase P, Pilotto F, Li F, Sundermann A, Lorenz AW, Tonkin JD, Stoll S (2019) Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci Total Environ 658:1531–1538. https://doi.org/10.1016/j.scitotenv.2018.12.234

    CAS  Article  PubMed  Google Scholar 

  30. Hawkins CP, Sedell JR (1981) Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62:387–397. https://doi.org/10.2307/1936713

    Article  Google Scholar 

  31. Hemminga MA, de Leeuw J, de Munek W, Koutstaal BP (1991) Decomposition in estuarine salt marshes: the effect of soil salinity and soil water content. Vegetatio 94:25–31. https://doi.org/10.1007/BF00044913

    Article  Google Scholar 

  32. Junk WJ, Wantzen KM (2004) The flood pulse concept New aspects approaches and applications an update. In: Welcomme R, Petr T (Eds.), Proceedings of the 2nd Large River Symposium LARS Pnom Penh Cambodia. Bangkok: RAP Publication

  33. Karavin N, Yalman E, Kizir Z, Kocamaz A, Kartal B (2016) Variation in leaf litter decomposition rate according to salinity and water regime in Juglans regia L. Int J Adv Res Biol Sci 3:158–162

    CAS  Google Scholar 

  34. Larsen S, Bruno MC, Vaughan IP, Zolezzi G (2019) Testing the river continuum concept with geostatistical stream-network models. Ecol Complex 39:100773. https://doi.org/10.1016/j.ecocom.2019.100773

    Article  Google Scholar 

  35. Lillehammer A, Brittain JE (1987) Longitudinal zonation of the benthic invertebrate fauna in the river Glomma. East Nor Fauna Norv Ser A8:1–10

    Google Scholar 

  36. Lopes M, Martins P, Ricardo F, Rodrigues AM, Quintino V (2011) In situ experimental studies in estuaries: a comparison of Phragmites australis and Fucus vesiculosus. Estuar Coast Shelf Sci 92:573–580. https://doi.org/10.1016/j.ecss.2011.02.014

    Article  Google Scholar 

  37. Lourenço L (1986) Aproveitamento hidráulico do vale do Mondego. In: “Problemas do Vale do Mondego”, 4º Colóquio Ibérico de Geografia, p. 45–59

  38. Marques JC, Maranhão P, Pardal MA (1993) Human impact assessment on the subtidal microbenthic community structure in the Mondego Estuary (Western Portugal). Estuar Coast Shelf Sci 37:403–419. https://doi.org/10.1006/ecss.1993.1064

    Article  Google Scholar 

  39. Marques JC, Graça MAS, Pardal MA (2002) Introducing the Montego river basin. In: Pardal MA, Marques JC, Graça MAS (eds) Aquatic ecology of the Mondego river basin. Global importance of local experience. Universidade de Coimbra, Portugal

    Google Scholar 

  40. Marques JC, Pardal MA, Maranhão P (2002) Characterisation of the macroinvertebrate benthic communities in the Mondego estuary. In: Pardal MA, Marques JC, Graça MAS (eds) Aquatic ecology of the Mondego river basin. Global importance of local experience. Universidade de Coimbra, Portugal, pp 169–197

    Google Scholar 

  41. McArthur JV, Aho JM, Rader RB, Mills GL (1994) Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J North Am Benthol Soc 13:57–67. https://doi.org/10.2307/1467265

    Article  Google Scholar 

  42. Menéndez M, Hernández O, Sanmartí N, Comín FA (2004) Variability of organic matter processing in a Mediterranean coastal lagoon. Int Rev Hydrobiol 89:476–483. https://doi.org/10.1002/iroh.200410728

    Article  Google Scholar 

  43. Múrias T, Cabral JA, Lopes R, Marques JC (1997) Low-water use of the Mondego Estuary (West Portugal) by waders (Charadrii). Ardeola 44:79–91

    Google Scholar 

  44. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621

    Article  Google Scholar 

  45. Naiman RJ, Melillo JM, Lock MA, Ford TE, Reice SR (1987) Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology 68:1139–1156. https://doi.org/10.2307/1939199

    Article  Google Scholar 

  46. Neto JM, Flindt MR, Marques JC, Pardal MA (2008) Modelling nutrient mass balance in a temperate meso-tidal estuary: implications for management. Estuar Coast Shelf Sci 76:175–185. https://doi.org/10.1016/j.ecss.2007.06.013

    Article  Google Scholar 

  47. Neto JM, Teixeira H, Patrício J, Baeta A, Veríssimo H, Pinto R, Marques JC (2010) The response of estuarine macrobenthic communities to natural-and human-induced changes: dynamics and ecological quality. Estuar Coasts 33:1327–1339. https://doi.org/10.1007/s12237-010-9326-x

    Article  Google Scholar 

  48. Neto JM, Feio MJ, Teixeira H, Patrício J, Serra SRQ, Franco JN, Calapez AR, Constantino E (2014) Transitional and freshwater bioassessments: one site, two perspectives? Mar Pollut Bull 78:153–164. https://doi.org/10.1016/j.marpolbul.2013.10.048

    CAS  Article  PubMed  Google Scholar 

  49. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. https://doi.org/10.1126/science.1185782

    CAS  Article  PubMed  Google Scholar 

  50. Peterson EE, Ver Hoef JM, Isaak DJ, Falke JA, Fortin M-J, Jordan CE, McNyset K, Monestiez P, Ruesch AS, Sengupta A, Som N, Steel EA, Theobald DM, Torgersen CE, Wenger SJ (2013) Modelling dendritic ecological networks in space: an integrated network perspective. Ecol Lett 16:707–719. https://doi.org/10.1111/ele.12084

    Article  PubMed  Google Scholar 

  51. Piano E, Bona F, Falasco E, La Morgia V, Badino G, Isaia M (2015) Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps). Sci Total Environ 536:1007–1018. https://doi.org/10.1016/j.scitotenv.2015.05.089

    CAS  Article  PubMed  Google Scholar 

  52. Rodríguez-Castillo T, Estévez E, González-Ferreras AM, Barquín J (2019) Estimating ecosystem metabolism to entire river networks. Ecosystems 22:892–911

    Article  Google Scholar 

  53. Rundle SD, Attrill MJ, Arshad A (1998) Seasonality in macroinvertebrate community composition across a neglected ecological boundary, the freshwater-estuarine transition zone. Aquat Ecol 32:211–216. https://doi.org/10.1023/A:1009934828611

    Article  Google Scholar 

  54. Sabater S, Muñoz I, Feio MJ, Romani AD, Graça MAS (2008) Iberian rivers. In: Tockner K, Robinson CT, Uehlinger U (eds) Rivers of Europe. Elsevier, San Diego

    Google Scholar 

  55. Sangiorgio F, Pinna M, Basset A (2004) Inter- and intra-habitat variability of plant detritus decomposition in a transitional environment (Lake Alimini, Adriatic Sea). Chem Ecol 20:353–366. https://doi.org/10.1080/02757540410001664594

    Article  Google Scholar 

  56. Sangiorgio F, Basset A, Pinna M, Sabetta L, Abbiati M, Ponti M, Minocci M, Orfanidis S, Nicolaidou A, Moncheva S, Trayanova A, Georgescu L, Dragan S, Beqiraj S, Koutsoubas D, Evagelopoulos A, Reizopoulou S (2007) Ecosystem processes: litter breakdown patterns in Mediterranean and Black Sea transitional waters Transit. Waters Bull 1:51–55. https://doi.org/10.1285/i1825229Xv1n3p51

    Article  Google Scholar 

  57. Sardiña P, Beardall J, Beringer J, Grace M, Thompson RM (2017) Consequences of altered temperature regimes for emerging freshwater invertebrates. Aquat Sci 79:265–276. https://doi.org/10.1007/s00027-016-0495-y

    CAS  Article  Google Scholar 

  58. Southwood TRE (1977) Habitat, the templet for ecological strategies. J Anim Ecol 46:337–365

    Article  Google Scholar 

  59. Statzner B, Higler B (1986) Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshw Biol 16:127–139. https://doi.org/10.1111/j.1365-2427.1986.tb00954.x

    Article  Google Scholar 

  60. Sutcliffe DW (1993) Reproduction in gammarus (crustacea, amphipoda): female strategies. Freshw Forum 3:26–64

    Google Scholar 

  61. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce Systématique, biologie, écologie. CNRS Editions, France

    Google Scholar 

  62. Thorp JH, Delong MD (2002) Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96:543–550. https://doi.org/10.1034/j.1600-0706.2002.960315.x

    Article  Google Scholar 

  63. Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147. https://doi.org/10.1002/rra.901

    Article  Google Scholar 

  64. Townsend CR, Hildrew AG (1994) Species traits in relation to a habitat templet for river systems. Freshw Biol 31:265–275

    Article  Google Scholar 

  65. Townsend CR, Dolédec S, Scarsbrook M (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37:367–387

    Article  Google Scholar 

  66. Vannote RJ, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  67. Villanueva VD, Font J, Schwartz T, Romaní A (2010) Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. J Bioadhes Biofilm Res 27:59–71. https://doi.org/10.1080/08927014.2010.538841

    CAS  Article  Google Scholar 

  68. Walters RJ, Hassal M (2006) The temperature-size rule in ectotherms: explanation exist after all? Am Nat 167:510–523

    Article  Google Scholar 

  69. Winkler G, Dodson JJ, Bertrand N, Thivierge D, Vincent WF (2003) Trophic coupling across the St. Lawrence river estuarine transition zone. Mar Ecol Prog Ser 251:59–73. https://doi.org/10.3354/meps251059

    Article  Google Scholar 

  70. Yarrow MM, Marin VH (2007) Toward conceptual cohesiveness: a historical analysis of the theory and utility of ecological boundaries and transition zones. Ecosystems 10:462–476. https://doi.org/10.1007/s10021-007-9036-9

    Article  Google Scholar 

  71. Zeuss D, Brunzel S, Brandl R (2016) Environmental drivers of voltinism and body size in insect assemblages across Europe. Glob Ecol Biogeogr 26:154–165. https://doi.org/10.1111/geb.12525

    Article  Google Scholar 

Download references

Funding

The project was supported by the strategic project UIDB/04292/2020 attributed to MARE—Marine and Environmental Sciences Centre by FCT—Fundação para a Ciência e a Tecnologia, I.P; and by the project PHArA-On (H2020-SC1-FA-DTS-2018–2) through the post-doc grant of 2nd author.

Author information

Affiliations

Authors

Contributions

MJF and JMN are responsible for the study design, fieldwork, data analysis, and writing the manuscript, and SRQS for data analysis and manuscript redaction.

Corresponding author

Correspondence to Maria João Feio.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Consent to participate

All authors have agreed to participate in the manuscript.

Consent for publication

We authorize the publication of the manuscript—there is no need for additional authorizations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feio, M.J., R. Q. Serra, S. & M. Neto, J. From headwaters into the estuarine zone: changes in processes and invertebrate communities in response to abiotic conditions. Aquat Ecol 55, 149–168 (2021). https://doi.org/10.1007/s10452-020-09820-7

Download citation

Keywords

  • Litter decomposition
  • Biofilm growth
  • Primary production
  • Traits