Skip to main content
Log in

Development of microsatellite markers for Diaphanosoma dubium (Crustacea, Cladocera) and application to seasonal population dynamics

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Diaphanosoma, the “tropical Daphnia”, is common and ubiquitous in South China. Like other ctenopods, Diaphanosoma has a reproductive mode similar to Daphnia’s, but its resting eggs are rarely observed and lack an ephippium. With limited dispersal and reduced buffer effect from resting egg banks, Diaphanosoma is expected to have a population genetic structure different from that of temperate Daphnia. To facilitate genetic comparison, we developed microsatellite markers using next-generation sequencing for the most common species in tropical and subtropical East Asia, Diaphanosoma dubium. Thirty-one polymorphic microsatellite markers were obtained, and 29 of them were efficient for the congeneric species D. excisum, D. orghidani, D. mongolianum and D. chankensis. The markers allowed intra- and interspecific genetic analysis, including population structure, hybridization and introgression. We used 11 selected microsatellite markers to analyze spatial and temporal heterogeneity of genetic diversity in four (sub)tropical D. dubium populations from two large reservoirs and two temporary ponds. In contrast to temperate Cladocera, higher genetic diversity in summer rather than in spring suggested weak contribution from resting eggs in spring. Clustering of DAPC and STRUCTURE analyses indicated a clear-cut genetic structure in the four populations. Variation partitioning revealed that water storage and depth were key factors in genetic differentiation. Within large reservoirs, we detected backward (reversing time) gene flow from resting egg banks. We conclude that resting eggs have an effective contribution to the genetic diversity in large water bodies during growing seasons and that large water bodies can host higher genetic diversity in summer due to environmental heterogeneity and high carrying capacity. Spatial and temporal heterogeneity of genetic diversity detected by our microsatellite markers showed the newly developed markers can be applied for further study of populations of D. dubium and other species of Diaphanosoma at a contemporary scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achuthankutty CT, Shrivastava AY, Mahambre GG, Goswami SC, Madhupratap M (2000) Parthenogenetic reproduction of Diaphanosoma celebensis (Crustacea: Cladocera): influence of salinity on feeding, survival, growth and neonate production. Marine Biol 137:19–22

    Article  Google Scholar 

  • Alekseev V, Lampert W (2001) Maternal control of resting-egg production in Daphnia. Nature 414:899–901

    Article  PubMed  CAS  Google Scholar 

  • Alric B, Möst M, Domaizon I, Pignol C, Spaak P, Perga ME (2016) Local human pressures influence gene flow in a hybridizing Daphnia species complex. J Evol Biol 29:720–735

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Stoeckel S, Bailleul D (2020) New insights into the population genetics of partially clonal organisms: when seagrass data meet theoretical expectations. Mol Ecol 29:3248–3260

    Article  PubMed  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Borcard D, François G, Legendre P (2011) Numerical ecology with R. Springer, New York , pp 216–228

    Book  Google Scholar 

  • Brede N, Yhielsch A, Sandrock C, Spaak P, Keller B, Streit B, Schwenk K (2006) Microsatellite markers for European Daphnia. Mol Ecol Notes 6:536–539

    Article  CAS  Google Scholar 

  • Cairney M, Taggart JB, Høyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol 9:2155–2234

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443(7114):989–992

    Article  PubMed  CAS  Google Scholar 

  • Carvalho G, Wolf HG (1989) Resting eggs of lake-Daphnia: I. Distribution, abundance and hatching of eggs collected from various depth in lake sediments. Freshw Biol 22:459–470

    Article  Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. Proc 16th Int Parallel Distrib Process Symp 2:184

    Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Côté SD, Dallas JF, Marshall F, Irvine RJ, Langvatn R, Albon SD (2002) Microsatellite DNA evidence for genetic drift and philopatry in Svalbard reindeer. Mol Ecol 11:1923–1930

    Article  PubMed  Google Scholar 

  • Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F (2001) Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. PNAS 98:6256–6260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typhaminima) using next-generation sequencing technology. J Hered 101:789–793

    Article  PubMed  CAS  Google Scholar 

  • De Gelas K, De Meester L (2005) Phylogeography of Daphnia magna in Europe. Mol Ecol 14:753–764

    Article  PubMed  CAS  Google Scholar 

  • De Meester L (1997) Neutral markers, ecologically relevant traits, and the structure of genetic variation in Daphnia. Aquat Ecol 31:79–87

    Article  Google Scholar 

  • De Meester L, Gomez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol 23:121–135

    Article  Google Scholar 

  • De Meester L, Vanoverbeke J, De Gelas K, Ortells R, Spaak P (2006) Genetic structure of cyclic parthenogenetic zooplankton populations: a conceptual framework. Arch Hydrobiol 167:217–244

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisk D, Latta LC IV, Knapp RA, Pfrender ME (2007) Rapid evolution in response to introduced predators I: rates and patterns of morphological and life-history trait divergence. BMC Evol Biol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplication of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fox JA (2004) New microsatellite primers for Daphnia galeata mendotae. Mol Ecol Notes 4:544–546

    Article  CAS  Google Scholar 

  • Green AJ, Figuerola J, Sánchez MI (2002) Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecol 23(3):177–189

    Article  Google Scholar 

  • Griebel J, Gießler S, Yin M, Wolinska J (2016) Parental and hybrid Daphnia from the D. longispina complex: long-term dynamics in genetic structure and significance of overwintering modes. J Evol Biol 29:810–823

    Article  PubMed  CAS  Google Scholar 

  • Griffith DA, Peres-Neto P (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2631

    Article  PubMed  Google Scholar 

  • Han BP, Yin J, Lin X, Dumont HJ (2011) Why is Diaphanosoma (Crustacea: Ctenopoda) so common in the tropics? Influence of temperature and food on the population parameters of Diaphanosoma dubium, and a hypothesis on the nature of tropic cladocerans. Hydrobiologia 668:109–115

    Article  CAS  Google Scholar 

  • Han XY, Xu L, Chen X, Han BP (2011) Diversity and spatial distribution of cladoceran resting eggs in surface sediments of Liuxihe Reservoir, Guangdong. Ecol Sci 30(3):273–279

    Google Scholar 

  • Hebert PDN (1978) The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev 53:387–426

    Article  Google Scholar 

  • Hedrick PW (2011) Genetics of populations. Jones and Bartlett Learning, Sundbury, MA

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Jarne P, Laǵoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11(10):424–429

    Article  PubMed  CAS  Google Scholar 

  • Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16(4):191–198

    Article  PubMed  CAS  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanshour A, Conant E, Juras R, Cothran EG (2013) Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J Hered 104(3):86–398

    Article  CAS  Google Scholar 

  • Korovchinsky NM, Boikova OS (1996) The dormant eggs of the Ctenopoda (Crustacea: Branchiopoda): a review. Hydrobiologia 441:73–92

    Article  Google Scholar 

  • Korovchinsky NM (2000) Redescription of Diaphanosoma dubium Manuilova, 1964 (Branchiopoda: Ctenopoda: Sididae), and description of a new, related species. Hydrobiologia 441:73–92

    Article  Google Scholar 

  • Korpelainen H (1986) Temporal changes in the genetic structure of Daphnia magna populations. Heredity 57:5–14

    Article  Google Scholar 

  • Latta LC IV, Fisk DL, Knapp RA, Pfrender ME (2010) Genetic resilience of Daphnia populations following experimental removal of introduced fish. Conserv Genet 11:1737–1745

    Article  Google Scholar 

  • Li RQ, Fan W, Tian G, Zhu HM, He L, Cai J, Huang QF, Cai QL, Li B, Bai YQ et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 63:311–317

    Article  CAS  Google Scholar 

  • Lin QQ, Hu R, Han BP (2003) Effect of hydrodynamics on nutrient and phytoplankton distribution in Liuxihe Reservoirs. Acta Ecol Sin 23:2278–2284

    Google Scholar 

  • Liu P, Xu L, Xu SL, Martínez A, Chen H, Cheng D, Dumont HJ, Han BP, Fontaneto D (2018) Species and hybrids in the genus Diaphanosoma Fisher, 1850 (Crustacea: Branchiopoda: Cladocera). Mol Phylogenet Evol 118:369–378

    Article  PubMed  Google Scholar 

  • Lohr JN, Haag CR (2015) Genetic load, inbreeding depression, and hybrid vigor covary with population size: An empirical evaluation of theoretical predications. Evolution 69:3109–3122

    Article  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  PubMed  CAS  Google Scholar 

  • Louette G, Vanoverbeke J, Ortells R, De Meester L (2007) The founding mothers: the genetic structure of newly established Daphnia populations. Oikos 116:728–741

    Article  CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Mellors WK (1975) Selective predation of ephippial Daphnia and the resistance of ephippial eggs to digestion. Ecology 56:974–980

    Article  Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsini L, Spanier KI, De Meester L (2012) Genomic signature of natural and anthropogenic stress in wild populations of the water flea Daphnia magna: validation in space, time and experimental evolution. Mol Ecol 21:2160–2175

    Article  PubMed  Google Scholar 

  • Ortells R, Snell TW, Gómez A, Serra M (2000) Patterns of genetic differentiation in resting egg banks of a rotifer species complex in Spain. Arch Hydrobiol 149:529–551

    Article  Google Scholar 

  • Pajk F, Zhang JX, Han B-P, Dumont HJ (2018) Thermal reaction norms of a subtropical and a tropical species of Diaphanosoma (Cladocera) explain their distribution. Limnol Oceanogr 63:1204–1220

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial autocorrelation in the study of ecological communities. Global Ecol Biogeogr 19:174–184

    Article  Google Scholar 

  • Petrusek A, Seda J, Macháček J, Ruthová Š, Šmilauer P (2008) Daphnia hybridization along ecological gradients in pelagic environments: the potential for the presence of hybrid zones in plankton. Philos T R Soc B 363:2931–2941

    Article  Google Scholar 

  • Primmer CR, Møller AP, Ellegren H (1996) A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5:365–378

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical computing, Vienna

    Google Scholar 

  • Rannala B (2007) BayesAss, version 3.0. University of California, Davis, California

    Google Scholar 

  • Rellstab C, Keller B, Girardclos S, Anselmetti FS, Spaak P (2011) Anthropogenic eutrophication shapes the past and present taxonomic composition of hybridizing Daphnia in unproductive lakes. Limnol Oceanogr 56(1):292–302

    Article  CAS  Google Scholar 

  • Ribeiro R, Baird DJ, Soares AMVM, Lopes I (2012) Contaminant driven genetic erosion: a case study with Daphnia longispina. Environ Toxicol Chem 31(5):977–982

    Article  PubMed  CAS  Google Scholar 

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176

    Article  PubMed  Google Scholar 

  • Robinson JD, Haag CR, Hall DW, Pajunen V, Wares JP (2012) Genetic estimates of population age in the waterflea, Daphnia magna. J Hered 103(6):887–897

    Article  PubMed  Google Scholar 

  • Rother A, Pitsch M, Hülsmann S (2010) The importance of hatching from resting eggs for population dynamics and genetic composition of Daphnia in a deep reservoir. Freshwater Biol 55:2319–2331

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    Article  PubMed  CAS  Google Scholar 

  • Sarma SSS, Dumont HJ, Nandini S (2004) Interactions between the anomopod cladocerans Ceriodaphnia dubia, C-cornuta, Simocephalus vetulus and S-serrulatus, the aphanoneurid worm Aeolosoma sp., and the fish Skiffia lermae: predation or competition, or both? Hydrobiologia 526(1):147–156

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Senan S, Kizhakayil D, Sasikumar B, Sheeja TE (2014) Methods for development of microsatellite markers: an overview. Not Sci Biol 6(1):1–13

    Article  CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  PubMed  CAS  Google Scholar 

  • Smith FE (1963) Population dynamics in Daphnia magna and a new model for population growth. Ecology 44(4):651–663

    Article  Google Scholar 

  • Spaak P, Denk A, Boersma M, Weider LJ (2004) Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex. J Plankton Res 26:625–635

    Article  Google Scholar 

  • Spaak P (1996) Temporal changes in the genetic structure of the Daphnia species complex in Tjeukemeer, with evidence for backcrossing. Heredity 76:539–548

    Article  Google Scholar 

  • Stoeckel S, Grange J, Fernández-Manjarres JF, Bilger I, Frascaria-Lacoste N, Mariette S (2006) Heterozygote excess in a self-incompatible and partially clonal forest tree species: Prunus avium L. Mol Ecol 15:2019–2118

    Article  CAS  Google Scholar 

  • Tong J, Wang Z, Yu X, Wu Q, Chu KH (2002) Cross-species amplification in silver carp and bighead carp with microsatellite primers of common carp. Mol Ecol Resour 2:245–247

    Article  CAS  Google Scholar 

  • Vandekerkhove J, Declerck S, Brendonck L, Conde-Porcuna J, Jeppesen E, De Meester L (2005) Hatching of cladoceran dormant eggs: temperature and photoperiod. Freshw Biol 50:96–104

    Article  Google Scholar 

  • Vandekerkhove J, Declerck S, Jeppesen E, Conde-Porcuna J, Brendonck L, De Meester L (2005) Dormant propagule banks intergrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142:109–116

    Article  PubMed  Google Scholar 

  • Van Doorslaer W, Vanoverbeke J, Duvivier C, Rousseaux S, Jansen M, Jansen B, Feuchtmayr H, Atkinson D, Moss B, Stoks R et al (2009) Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Global Change Biol 15:3046–3055

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:35–538

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    Article  PubMed  CAS  Google Scholar 

  • Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39(3):312–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Wondie A, Mengistou S (2014) Seasonal variability of secondary production of cladocerans and rotifers, and their trophic role in Lake Tana, Ethiopia, a large, turbid, tropical highland lake. Afr J Aquat Sci 39(4):403–416

    Article  Google Scholar 

  • Xiang XL, Xi YL, Wen XL, Zhang G, Wang JX, Hu K (2011a) Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton. Mol Phylogenet Evol 59:385–398

    Article  Google Scholar 

  • Xiang XL, Xi YL, Wen XL, Zhang G, Wang JX, Hu K (2011b) Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Mol Ecol 10:3027–3044

    Article  Google Scholar 

  • Xu L, Han BP, Damme KV, Vierstraete A, Vanfleteren JR, Dumont HJ (2011) Biogeography and evolution of the Holarctic zooplankton genus Leptodora (Crustacea: Branchiopoda: Haplopoda). J Biogeogr 38:359–370

    Article  Google Scholar 

  • Xu S, Hebert PDN, Kotov AA, Cristescu ME (2009) The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda). Mol Ecol 18:5161–5179

    Article  PubMed  CAS  Google Scholar 

  • Zane L, Bargelloni L, Pataranello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ping Liu is grateful to Andy Vierstraete from Gent University for training in sequencing DNA of small cladocerans. We also thank colleagues and students in our laboratory for field sampling. Support from Grants from the NSFC (31901098 and 31670460) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ping Han.

Additional information

Handling Editor: Télesphore Sime-Ngando

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Xu, SL., Liao, J. et al. Development of microsatellite markers for Diaphanosoma dubium (Crustacea, Cladocera) and application to seasonal population dynamics. Aquat Ecol 55, 1189–1206 (2021). https://doi.org/10.1007/s10452-020-09812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09812-7

Keywords

Navigation