Skip to main content

Impact of environmental conditions on phospholipid fatty acid composition: implications from two contrasting estuaries

Abstract

Phospholipid (PL) composition has a tremendous influence on the cell integrity and physiological competency. At the same time, plankton PL make important metabolic fuels for higher trophic levels. The goal of this study was to identify environmental control on PL production and their molecular identity of the suspended particles in two different estuaries. We conducted research in subtropical, eutrophic Wenchang River Estuary in China and temperate pristine, mesotrophic Krka River Estuary in Croatia. In agreement with the more abundant phytoplankton, PL concentrations were much higher in the Wenchang River Estuary (30.3–178.2 μg L−1) than in the Krka River Estuary (8.4–18.8 μg L−1). Given that six PL classes investigated (phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylinositol (PI), and phosphatidylserine (PS)) have different roles in the cell, we expected their different fatty acid composition in different environments. We found small differences in the fatty acid composition of PC, PG, and PI between two estuaries. These results suggest that the essential fatty acid compositions of these PL in estuarine plankton are relatively constant in order to preserve membrane functions and/or cell processes in which they are involved regardless of environmental conditions. In contrast, PE, PA and PS fatty acid composition substantially differed between two estuaries as well as throughout the salinity gradient in each estuary. This suggests the adaptability of plankton to remodel these PL depending on the environmental conditions and the plankton community structure. Good environmental conditions (favorable N/P ratio, temperature) are important for increased PL content (% in POC and total lipids) in estuarine plankton and increased essential polyunsaturated fatty acid content in PL, which is beneficial to higher trophic levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

Data are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems, a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58:122–137

    CAS  Article  Google Scholar 

  • Barlow RG, Cummings DG, Gibb SW (1997) Improved resolution of mono– and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C–8 HPLC. Mar Ecol Prog Ser 161:303–307

    CAS  Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Article  PubMed  Google Scholar 

  • Boelen P, van Mastrigt A, van de Bovenkamp HH, Heeres H, Buma AGJ (2017) Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae. Aquacult Int 25:577–587

    CAS  Article  Google Scholar 

  • Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50:70–80

    CAS  Article  Google Scholar 

  • Bourguet N, Goutx M, Ghiglione JF, Pujo-Pay M, Mevel G, Momzikoff A, Mousseau L, Guigue C, Garcia N, Raimbault P, Pete R, Oriol L, Lefèvre D (2009) Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the DYFAMED site, NW Mediterranean. Deep-Sea Res Pt II 56:1454–1469

    CAS  Article  Google Scholar 

  • Brinis A, Méjanelle L, Momzikoff A, Gondry G, Fillaux J, Point V, Saliot A (2004) Phospholipid ester-linked fatty acids composition of size-fractionated particles at the top ocean surface. Org Geochem 35:1275–1287

    CAS  Article  Google Scholar 

  • Bužančić M, Ninčević Gladan Ž, Marasović I, Kušpilić G, Grbec B, Matijević S (2012) Population structure and abundance of phytoplankton in three bays on the eastern Adriatic coast: Sibenik Bay, Kastela Bay and Mali Ston Bay. Acta Adriat 53:413–435

    Google Scholar 

  • Canuel EA (2001) Relations between river flow, primary production and fatty acid composition of particulate organic matter in San Francisco and Chesapeake Bays: a multivariate approach. Org Geochem 32:563–583

    CAS  Article  Google Scholar 

  • Cetinić I, Viličić D, Burić Z, Olujić G (2006) Phytoplankton seasonality in a highly stratified karstic estuary (Krka, Adriatic Sea). Hydrobiologia 555:31–40

    Article  CAS  Google Scholar 

  • Cloern JE, Foster SQ, Kleckner EA (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11:2477–2501

    Article  Google Scholar 

  • Connelly TL, Businski TN, Deibel D, Parrish CC, Trela P (2016) Annual cycle and spatial trends in fatty acid composition of suspended particulate organic matter across the Beaufort Sea shelf. Estuar Coast Shelf Sci 18:170–181

    Article  CAS  Google Scholar 

  • Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Cordeiro RC, Abril G (2018) Predominance of phytoplankton-derived dissolved and particulate organic carbon in a highly eutrophic tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeochemistry 137:1–14

    CAS  Article  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    PubMed  Article  Google Scholar 

  • Derieux S, Fillaux J, Saliot A (1998) Lipid class and fatty acid distributions in particulate and dissolved fractions in the north Adriatic sea. Org Geochem 29:1609–1621

    CAS  Article  Google Scholar 

  • Dijkman NA, Kromkamp JC (2006) Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Mar Ecol Prog Ser 324:113–125

    CAS  Article  Google Scholar 

  • Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Ann Rev Biochem 66:199–232

    CAS  PubMed  Article  Google Scholar 

  • Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 1–37

    Google Scholar 

  • Espinosa LF, Pantoja S, Pinto LA, Rullkötter J (2009) Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off Northern Chile. Deep-Sea Res Pt I 56:1063–1072

    CAS  Article  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305(5682):354–360

    CAS  PubMed  Article  Google Scholar 

  • Galois R, Richard P, Fricourt B (1996) Seasonal variations in suspended particulate matter in the Marennes-Oleron Bay, France, using lipids as biomarkers. Estuar Coast Shelf Sci 43:335–357

    CAS  Article  Google Scholar 

  • Gašparović B, Godrijan J, Frka S, Tomažić I, Penezić A, Marić M, Djakovac T, Ivančić I, Paliaga P, Lyons D, Precali R, Tepić N (2013) Adaptation of marine plankton to environmental stress by glycolipid accumulation. Mar Environ Res 92:120–132

    PubMed  Article  CAS  Google Scholar 

  • Gašparović B, Frka S, Koch BP, Zhu ZY, Bracher A, Lechtenfeld OJ, Neogi SB, Lara RJ, Kattner G (2014) Factors influencing particulate lipid production in the East Atlantic Ocean. Deep-Sea Res Pt I 89:56–67

    Article  CAS  Google Scholar 

  • Gašparović B, Kazazić SP, Cvitešić A, Penezić A, Frka S (2015) Improved separation and analysis of glycolipids by Iatroscan thin–layer chromatography–flame ionization detection. J Chromatogr A 1409:259–267

    PubMed  Article  CAS  Google Scholar 

  • Gašparović B, Kazazić SP, Cvitešić A, Penezić A, Frka S (2017) Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection” [j. chromatogr. A 1409 (2015) 259–267]. J Chromatogr A 1521:168–169

    PubMed  Article  CAS  Google Scholar 

  • Gérin C, Goutx M (1994) Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991). J Mar Sys 5:343–360

    Article  Google Scholar 

  • Gibb SW, Barlow RG, Cummings DG, Rees NW, Trees CC, Holligan P, Suggett D (2000) Surface phytoplankton pigment distributions in the Atlantic Ocean, an assessment of basin scale variability between 50°N and 50°S. Prog Oceanogr 45:339–368

    Article  Google Scholar 

  • Goutx M, Gérin C, Bertrand JC (1990) An application of latroscan thin-layer chromatography with flame ionization detection - lipid classes of microorganisms as biomarkers in the marine environment. Org Geochem 16:1231–1237

    CAS  Article  Google Scholar 

  • Goutx M, Acquaviva M, Bertrand JC (1990) Cellular and extracellular carbohydrates and lipids from marine-bacteria during growth on soluble substrates and hydrocarbons. Mar Ecol Prog Ser 61:291–296

    CAS  Article  Google Scholar 

  • Gržetić Z, Precali R, Degobbis D, Škrivanić A (1991) Nutrient enrichment and phytoplankton response in an Adriatic karstic estuary. Mar Chem 32:313–331

    Article  Google Scholar 

  • Guiheneuf F, Fouqueray M, Mimouni V, Ulmann L, Jacquette B, Tremblin G (2010) Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae pavlova lutheri (pavlovophyceae) and odontella aurita (bacillariophyceae). J Appl Phycol 22:629–638

    CAS  Article  Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal Lipids and effect of the environment on their biochemistry. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 1–24

    Google Scholar 

  • Herbeck LS, Unger D, Krumme U, Liu SM, Jennerjahn TC (2011) Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar Coast Shelf Sci 93:375–388

    CAS  Article  Google Scholar 

  • Herbeck LS, Unger D, Wu Y, Jennerjahn TC (2013) Effluent, nutrient and organic matter export from shrimp and fishponds causing eutrophication in coastal and back–reef waters of NE Hainan, tropical China. Cont Shelf Res 57:92–104

    Article  Google Scholar 

  • Hernando M, Schloss IR, Almandoz GO, Malanga G, Varela DE, De Troch M (2018) Combined effects of temperature and salinity on fatty acid content and lipid damage in Antarctic phytoplankton. J Exp Mar Bio Ecol 503:120–128

    CAS  Article  Google Scholar 

  • Hixson SM, Arts MT (2016) Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob Change Biol 22:2744–2755

    Article  Google Scholar 

  • IPCC: Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf

  • Ivančić I, Degobbis D (1984) An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res 18:1143–1147

    Article  Google Scholar 

  • Jeffrey SW, Vesk M (1997) Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography, guidelines to modern methods monographs on oceanographic methodology. UNESCO Publishing, Paris, pp 37–84

    Google Scholar 

  • Jónasdóttir SH (2019) Fatty acid profiles and production in marine phytoplankton. Mar Drug 17:151

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I (2016) Lipid Metabolism in Microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Heidelberg, pp 413–484

    Chapter  Google Scholar 

  • Kunihiro T, Veuger B, Vasquez-Cardenas D, Pozzato L, Le Guitton M, Moriya K, Kuwae M, Omori K, Boschker HTS, van Oevelen D (2014) Phospholipid-derived fatty acids and quinones as markers for bacterial biomass and community structure in marine sediments. PLoS ONE 9(4):e96219

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Le Guitton M, Soetaert K, Sinninghe Damsté JS, Middelburg JJ (2017) A seasonal study of particulate organic matter composition and quality along an offshore transect in the southern North Sea. Estuar Coast Shelf Sci 188:1–11

    Article  CAS  Google Scholar 

  • Lechtenfeld OJ, Koch BP, Gašparović B, Frka S, Witt M, Kattner G (2013) The influence of salinity on the molecular and optical properties of surface microlayers in a karstic estuary. Mar Chem 150:25–38

    CAS  Article  Google Scholar 

  • Lee RF, Nevenzel JC, Paffenhofer GA (1971) Importance of wax ester and other lipids in the marine food chain: phytoplankton and copepods. Mar Biol 9:99–108

    CAS  Article  Google Scholar 

  • Li M, Gong RM, Rao XJ, Liu ZL, Wang XM (2005) Effects of nitrate concentration on growth and fatty acid composition of the marine microalga pavlova viridis (prymnesiophyceae). Ann Microb 55:51–55

    CAS  Google Scholar 

  • Liu SM, Li RH, Zhang GL, Wang DR, Du JZ, Herbeck LS, Zhang J, Ren JL (2011) The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe Wenjiaohe Estuary and Lagoon system in East Hainan, China. Mar Chem 125:49–68

    CAS  Article  Google Scholar 

  • Li RH, Liu SM, Li YW, Zhang GL, Ren JL, Zhang J (2014) Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences 11:481–506

    Article  Google Scholar 

  • Liu J, Hrustić E, Du J, Gašparović B, Čanković M, Cukrov N, Zhu Z, Zhang R (2019) Net submarinegroundwater-derived dissolved inorganic nutrients and carbon input to the oligotrophic stratified karstic estuary of the Krka River (Adriatic Sea, Croatia). J Geophys Res-Ocean Atm 124:4334–4349

    CAS  Article  Google Scholar 

  • Louis Y, Garnier C, Lenoble V, Mounier S, Cukrov N, Omanović D, Pižeta I (2009) Kinetic and equilibrium studies of copper–dissolved organic matter complexation in water column of the stratified Krka Estuary Croatia. Mar Chem 114:110–119

    CAS  Article  Google Scholar 

  • Mesquita MCB, Prestes ACC, Gomes AMA, Marinho MM (2020) Direct effects of temperature on growth of different tropical phytoplankton species. Microb Ecol 79:1–11

    PubMed  Article  Google Scholar 

  • Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77

    PubMed  Article  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuar Coastal Shelf Sci 82:335–340

    CAS  Article  Google Scholar 

  • Novak T, Godrijan J, Marić Pfannkuchen D, Djakovac T, Medić N, Ivančić I, Mlakar M, Gašparović B (2019) Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci Total Environ 668:171–183

    CAS  PubMed  Article  Google Scholar 

  • Palomo L, Canuel EA (2010) Sources of fatty acids in sediments of the York River Estuary: relationships with physical and biological processes. Estuar Coast 33:585–599

    CAS  Article  Google Scholar 

  • Parrish CC (1998) Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay newfoundland i lipid classes. Org Geochem 29:1531–1545

    CAS  Article  Google Scholar 

  • Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 35:119–128

    CAS  Article  Google Scholar 

  • Parrish CC, Wangersky PJ (1988) Iatroscan-measured profiles of dissolved and particulate marine lipid classes over the Scotian slope and in Bedford basin. Mar Chem 23:1–15

    CAS  Article  Google Scholar 

  • Pedrosa-Pamies R, Conte MH, Weber JC, Johnson R (2018) Carbon cycling in the Sargasso Sea water column: insights from lipid biomarkers in suspended particles. Prog Oceanogr 168:248–278

    Article  Google Scholar 

  • Penezić A, Gašparović B, Burić Z, Frka S (2010) Distribution of marine lipid classes in salty Rogoznica Lake (Croatia). Estuar Coast Shelf Sci 86:625–636

    Article  CAS  Google Scholar 

  • Rai LC, Gaur JP (2001) Algal adaptation to environmental stresses, physiological biochemical and molecular mechanisms. Springer, Berlin

    Book  Google Scholar 

  • Riekhof WR, Benning C (2009) Glycerolipid biosynthesis. In: Stern D (ed) The chlamydomonas sourcebook: organellar and metabolic processes. Academic Press, Amsterdam, pp 41–68

    Chapter  Google Scholar 

  • Rothlisberg PC, Pollard PC, Nichols PD, Moriarty DJW, Forbes AMG, Jackson CJ, Vaudrey D (1994) Phytoplankton community structure and productivity in relation to the hydrological regime of the Gulf of Carpentaria, Australia, in summer. Aust J Mar Freshw Res 45:265–282

    Article  Google Scholar 

  • Schunck W-H, Rossmeisl M, Macek Jilkova Z, Kuda O, Jelenik T, Medrikova D, Stankova B, Kristinsson B, Haraldsson GG, Svensen H, Stoknes I, Sjövall P, Magnusson Y, Balvers MGJ, Verhoeckx KCM, Tvrzicka E, Bryhn M, Kopecky J (2012) Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. PLoS ONE 7(6):e38834

    Article  CAS  Google Scholar 

  • Schwenk D, Seppälä J, Spilling K, Virkki A, Tamminen T, Oksman-Caldentey K-M, Rischer H (2013) Lipid content in 19 brackish and marine microalgae: influence of growth phase, salinity and temperature. Aquat Ecol 47:415–424

    Article  Google Scholar 

  • Scribe P, Fillaux J, Laureillard J, Denant V, Saliot A (1991) Fatty-acids as biomarkers of planktonic inputs in the stratified estuary of the Krka River, Adriatic Sea - relationship with pigments. Mar Chem 32:299–312

    CAS  Article  Google Scholar 

  • Siegenthaler P-A, Murata N (2004) Lipids in photosynthesis: structure function and genetics. Kluwer, New York

    Google Scholar 

  • Smith REH, Parrish CC, Depew DC, Ghadouani A (2007) Spatial patterns of seston concentration and biochemical composition between nearshore and offshore waters of a Great Lake. Freshw Biol 52:2196–2210

    CAS  Article  Google Scholar 

  • Strickland J, Parsons TR (1972) A practical handbook of sea water analysis. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Svensen C, Viličić D, Wassmann P, Arashkevich E, Ratkova T (2007) Plankton distribution and vertical flux of biogenic matter during high summer stratification in the Krka estuary (Eastern Adriatic). Estuar Coast Shelf Sci 71:381–390

    Article  Google Scholar 

  • Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS (2013) Remodeling of membrane lipids in iron starved Chlamydomonas. J Biol Chem 288:30246–30258

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Wada H, Murata N (2007) The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92:205–215

    CAS  PubMed  Article  Google Scholar 

  • Wawrik B, Paul JH (2004) Phytoplankton community structure and productivity along the axis of the Mississippi River plume in oligotrophic Gulf of Mexico waters. Aquat Microb Ecol 35:185–196

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the grant from the Croatian Science Foundation under the project IP-11-2013-8607, by a grant of the Bilateral collaboration between Croatia and China (No. 6–8 project in 2013), and by Ministry of Science and Technology in China (No. 2014CB441503). The authors thank Dr. Jelena Dautović for carrying out POC analyses of samples from the Krka River Estuary.

Funding

This work was funded by the grant from the Croatian Science Foundation under the project IP-11-2013-8607, by a grant of the Bilateral collaboration between Croatia and China (No. 6–8 project in 2013), and by Ministry of Science and Technology in China (No. 2014CB441503).

Author information

Authors and Affiliations

Authors

Contributions

IVŠ and SK did HPLC/MS/MS lipid and data analysis, TN analyzed and processed TLC-FID lipid data, MČ did environmental data analysis, ZLj analyzed pigments, EH and RZ performed nutrient analysis. BG, MM and ZZ conceived, planned and initiated the study; TN, MČ, JD, RZ, ZZ and BG performed field sampling, BG and IVŠ wrote the first manuscript draft. All authors discussed the results, edited the manuscript and approved the final submitted manuscript.

Corresponding author

Correspondence to Blaženka Gašparović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vrana Špoljarić, I., Novak, T., Gašparović, B. et al. Impact of environmental conditions on phospholipid fatty acid composition: implications from two contrasting estuaries. Aquat Ecol 55, 1–20 (2021). https://doi.org/10.1007/s10452-020-09805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09805-6

Keywords

  • Phospholipids
  • Fatty acids
  • Estuaries
  • Temperate
  • Subtropical
  • Phytoplankton pigments