Skip to main content
Log in

Macrozoobenthic communities of the saline Bolshaya Samoroda River (Lower Volga region, Russia): species composition, density, biomass and production

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We investigated species composition, density, biomass and estimated production of macrozoobenthos communities in the middle and mouth reaches of the saline Bolshaya Samoroda River (Volgograd region, Russia) from May 2013 to April 2014. A total of 30 euryhaline and halophilic taxa were found during the study period. There were significant differences in the species composition between both study sites that could be explained by differences in ecological conditions. The production of macrozoobenthos in the middle reach was 22.54 g dry wt m−2 yr−1, and in the mouth reach the production was 117 g dry wt m−2 yr−1. In all seasons of the year at both sites, the greatest contribution to benthic production was made by the same taxonomic groups. Diptera dominated at both sites. Amphipods were abundant only in the middle reach. In the middle reach, the greatest contributions to production were made by Gammarus lacustris, Sphaeromias pictus and Glyptotendipes salinus, and in the mouth reach, Microchironomus deribae, Tanytarsus kharaensis and Chironomus salinarius contributed to benthic production the most.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrei AE, Smith LM, Haukos DA, Surles JG, Johnson WP (2009) Foraging ecology of migrant shorebirds in saline lakes of the Southern Great Plains. Int J Waterbird Biol 32:138–148

    Google Scholar 

  • Armitage PD, Pinder LCV, Cranston PS (1994) Biology and ecology of non-biting midges. Chapman & Hall, London

    Google Scholar 

  • Atanackovic AD, Šporka F, Csányi B, Vasiljevic BM, Jelena M, Tomovic JM, Paunovic MM (2013) Oligochaeta of the Danube River—a faunistical review. Biologia 68(2):269–277. https://doi.org/10.2478/s11756-013-0155-9

    Article  Google Scholar 

  • Ballinger A, Lake PS (2006) Energy and nutrient fluxes from rivers and streamsinto terrestrialfood webs. Mar Freshw Res 57:15–28. https://doi.org/10.1071/MF05154

    Article  Google Scholar 

  • Barahona J, Millán A, Velasco J (2005) Population dynamics, growth and production of Sigara selecta (Fiebre, 1848) (Hemiptera, Corixidae) in a Mediterranean hypersaline stream. Freshwat Biol 50:2101–2113. https://doi.org/10.1111/j.13652427.2005.01463.x

    Article  Google Scholar 

  • Baxter CV, Fausch KD, Saunders WC (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwat Biol 50:201–220. https://doi.org/10.1111/j.1365-2427.2004.01328.x

    Article  Google Scholar 

  • Bazikalova AY (1945) Amphipods of Lake Baikal. Proc Baikal Limnol Stn USSR Acad Sci 11:1–440

    Google Scholar 

  • Benke AC (1998) Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology 79:899–910

    Google Scholar 

  • Benke AC, Huryn AD (2010) Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. J N Am Benthol Soc 29(1):264–285. https://doi.org/10.1899/08-075.1

    Article  Google Scholar 

  • Benke AC, Huryn AD (2017) Secondary production and quantitative food webs In: Methods in stream ecology. 3rd ed. Ecosystem function. Academic Press, Cambridge, vol 2, pp 235–254

    Google Scholar 

  • Benke AC, Van Arsdall TC Jr, Gillespie DM (1984) Invertebrate productivity in a subtropical Blackwater River: the importance of habitat and life history. Ecol Monograph 54(1):25–63

    Google Scholar 

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. Technical Guide 5, Quaternary Research Association, Cambridge, pp 161–254

  • Brown S, Hickey C, Harrington B, Gill R (2001) United states shorebird conservation plan, 2nd edn. Manomet Center for Conservation Sciences, Manomet

    Google Scholar 

  • Bunn SE, Davies PM (1992) Community structure of the macroinvertebrate fauna and water quality of a saline river system in south-western Australia. Hydrobiologia 248:143–160

    CAS  Google Scholar 

  • Carlisle DM, Clements WH (2003) Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams. J N Am Benthol Soc 22:582–597

    Google Scholar 

  • Cartier V, Claret C, Garnier R, Fayolle S, Franquet E (2010) Multi-scale approach to the environmental factors effects on spatio-temporal variability of Chironomus salinarius (Diptera: Chironomidae) in a French coastal lagoon. Estuar Coast Shelf S 86:637–644

    CAS  Google Scholar 

  • Ceretti G, Ferrarese U, Francescon A, Barbaro A (1987) Chironomids (Diptera: Chironomidae) in the natural diet of gilthead seabream (Sparus aurata L.) farmed in the Venice lagoon. Ent Scand Suppl 29:289–292

    Google Scholar 

  • Chekanovskaya OV (1962) Aquatic small-necked worms of the USSR fauna. Determinants on the fauna of the USSR, published by the Zoological Institute of the Academy of Sciences of the USSR. M.-L.: Publishing House of the Academy of Sciences of the USSR

  • Chernichko II, Kirikova TA (1999) Macrozoobenthos Sivash and the associated placement of waders. Fauna, ecology and protection of birds of the Azov-Black Sea region. Sat scientific works. Sonat, Simferopol, pp 230–257

    Google Scholar 

  • Christoffersen ML (2007) A catalogue of aquatic microdrile oligochaetes (Annelida: Clitellata) from South America. Acta Hydrobiol Sin 31:59–86

    Google Scholar 

  • Drake P, Arias AM (1995) Distribution and production of Chironomus salinarius (Diptera: Chironomidae) in a shallow coastal lagoon in the Bay of Cadiz. Hydrobiologia 299:195–206

    Google Scholar 

  • Estrella SM, Masero JA (2010) Prey and prey size selection by the near-threatened black-tailed godwit foraging in non-tidal areas during migration. Waterbirds 33:293–299

    Google Scholar 

  • Fellows S, Stone K, Jones S, Damude N, Brown S (2001) Central Plains/Playa Lakes regional shorebird conservation plan: version 1.0. US Fish and Wildlife Service, Denver

    Google Scholar 

  • Frolova LA, Nazarova L, Pestryakova L, Herzschuh U (2013) Analysis of the effects of climate-dependent factors on the formation of zooplankton communities that inhabit Arctic Lakes in the Anabar River basin. Contemp Probl Ecol 6(1):1–11

    Google Scholar 

  • Fuentes C, Green AJ, Orr J, Olafsson JS (2005) Seasonal variation in species composition and larval size of the benthic chironomid communities in brackish wetlands in Southern. Alicante, Spain. Wetlands 25:289–296

    Google Scholar 

  • Gallardo-Mayenco A (1994) Freshwater macroinvertebrate distribution in two basins with different salinity gradients (Guadalete and Guadaira river basins, south-western Spain). Int J Salt Lake Res 3:75–91. https://doi.org/10.1007/BF01990644

    Article  Google Scholar 

  • Gladyshev MI, Arts MI, Sushchik NN (2009) Preliminari estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems. In: Arts MT, Kainz M, Brett MT (eds) Lipids in aqutic ecosystems. Springer, New-York, pp 179–209

    Google Scholar 

  • Golovatyuk LV, Shitikov VK (2016) Salinity tolerance of macrozoobenthic taxa in small rivers of the Lake Elton basin. Russ J Ecol 47:540–545. https://doi.org/10.1134/S1067413616060059

    Article  Google Scholar 

  • Golovatyuk LV, Zinchenko TD (2015) Biological characteristics of the mass species of chironomids Cricotopus salinophilus and Chironomus salinarius from the saline rivers of Prieltonia: life cycles, specific production. Izv Sam NTS RAS 17:210–214

    Google Scholar 

  • Golovatyuk LV, Zinchenko TD, Sushchik NN, Kalachova GS, Gladyshev MI (2018) Biological aspects of the associations of biting midges (Diptera: Ceratopogonidae) in two saline rivers of the Elton Lake basin. Mar Freshw Res, Russia. https://doi.org/10.1071/MF17125

    Book  Google Scholar 

  • Golubkov SM (2000) Functional ecology of the larvae of amphibiotic insects. Zoological Institute of RAS, St Petersburg

    Google Scholar 

  • Goss-Custard JD (1977) The ecology of the Wash. III. Density-related behaviour and the possible effects of a loss of feeding grounds on wading birds (Charadrii). J Appl Ecol 14:721–739

    Google Scholar 

  • Grabowskyi M, Bącela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84. https://doi.org/10.1007/s10750-007-0759-6

    Article  Google Scholar 

  • Grzybkowska M (1989) Production estimates of the dominant taxa of Chironomidae (Diptera) in the modified, River Widawka and the natural, River Grabia, Central Poland. Hydrobiologia 179:245–259

    Google Scholar 

  • Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling KM (1991) A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210:105–144

    Google Scholar 

  • Hynes HBN, Harper F (1992) The life histories of Gammarus lacustris and G. pseudolimnaeus in southern Ontario. Crustaceana Supplement 3:329–341

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2017) IPCC Fifth Assessment Report (AR5) Observed climate change impacts database, version 2.01. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY. https://doi.org/10.7927/H4FT8J0X

  • International Wader Study Group (2003) Are waders world-wide in decline? Reviewing the evidence. Conclusions from the 2003 International Wader Study Group conference in Cбdiz, Spain. http://web.uct.ac.za/depts/stats/adu/wsg/pdf/wsgbdec2003-cadiz_conclusions.pdf. Accessed 20 Dec 2004

  • Juggins S (2013) Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat Sci Rev 64:20–32

    Google Scholar 

  • Kasatkina YN, Shubin AO (2012) The influence off oragereserves on the behavior of migrating little stints (Calidrisminuta) on Elton Lake. Zool Zh 91:95–110

    Google Scholar 

  • Kay WR, Halse SA, Scanlon MD, Smith MJ (2001) Distributions and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. J N Am Benthol Soc 20:182–199

    Google Scholar 

  • Krebs BPM (1979) Microchironomus deribae (Freeman, 1957) (Diptera, Chironomidae) in the Delta region of the Netherlands. Hydrobiol Bull (Amsterdam) 13:144–151

    Google Scholar 

  • Laville H, Tourento JN (1967) Contribution to the knowledge of three chironomids of Camargue and Marismas of Guadalquivir. Int J Lim 3:185–204

    Google Scholar 

  • Lepneva SG (1964) Larvae and pupae of the suborder Annulipalpia. The Fauna of the Soviet Union: Caddis Flies, Nauka. Leningrad 2:1–560

    Google Scholar 

  • Lukin EI (1976) Leeches of fresh and brackish water bodies. The Fauna of the Soviet Union: Leeches. Nauka, Leningrad

    Google Scholar 

  • Moller Pillot HKM (2013) Chironomidae larvae of the Netherlands and adjacent lowlands. Biology and ecology of the Chironomini 2. KNNV Publishing, Zeist

    Google Scholar 

  • Moore JW, Schindler DE, Carter JL, Fox J, Griffiths J, Holtgrieve GW (2007) Biotic control of stream fluxes: spawning salmon drive nutrient and matter export. Ecology 88:1278–1291

    PubMed  Google Scholar 

  • Moreno JL, Aboal M, Vidal-Abarca MR, Suárez ML (2001) Macroalgae and submerged macrophytes from fresh and saline waterbodies of ephemeral streams (‘ramblas’) insemiaridsouth-easternSpain. Mar Freshw Res 52:891–905. https://doi.org/10.1071/MF00008

    Article  CAS  Google Scholar 

  • Nakano S, Hitoshi M, Noatoshi K (1999) Terrestrial—aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80:2435–2441

    Google Scholar 

  • Nazarova L, Semenov VF, Sabirov RM, Efimov IY (2004) The state of bentic communities and water quality of Cheboksar Water reservoir. Water Resour 31(3):347–353

    Google Scholar 

  • Nazarova L, Self A, Brooks SJ, van Hardenbroek M, Herzschuh U, Diekmann B (2015) Northern Russian chironomid-based modern summer temperature data set and inference models. Global Planet Change 134:10–25

    Google Scholar 

  • Nazarova LB, Self AE, Brooks SJ, Solovieva N, Syrykh LS, Dauvalter VA (2017) Chironomid fauna of the lakes from the Pechora River basin (East of European part of Russian Arctic): ecology and reconstruction of recent ecological changes in the region. Contemp Probl Ecol 4:350–362

    Google Scholar 

  • Nomokonova VI, Zinchenko TD, Popchenko TV (2013) Trophic condition of salty rivers in the basin of Lake Elton. Izv Sam NTS RAS 15(3):368–475

    Google Scholar 

  • Ohtaka A (2014) Profundal Oligochaete faunas (Annelida, Clitellata) in Japanese lakes. Zoosymposia 9:24–35. https://doi.org/10.11646/zoosymposia.9.1.7

    Article  Google Scholar 

  • Palagushkina OV, Nazarova LB, Wetterich S, Shirrmaister L (2012) Diatoms from sediments of water bodies of Siberian Arctic. Contemp Probl Ecol 5(4):413–422

    Google Scholar 

  • Palagushkina O, Wetterich S, Schirrmeister L, Nazarova L (2017) Modern and fossil diatom assemblages from Bol’shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Siberia). Contemp Probl Ecol 4:380–394

    Google Scholar 

  • Palmer GC, Bennett AF (2006) Riparian zones provide for distinct bird assemblages in forest mosaics of south-east Australia. Biol Conserv 130:447–457. https://doi.org/10.1016/J.BIOCON.2006.01.006

    Article  Google Scholar 

  • Pan BZ, Wang HJ, Liang XM, Wang HZ (2011) Macrozoobenthos in Yangtze floodplain lakes: patterns of density, biomass, and production in relation to river connectivity. J N Am Benthol Soc 30(2):589–602. https://doi.org/10.1899/10-025.1

    Article  Google Scholar 

  • Piscart C, Moreteau J-C, Beisel J-N (2005) Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 546:1–10. https://doi.org/10.1007/s10750-005-4463-0

    Article  Google Scholar 

  • Ponti M, Colangelo MA, Ceccherelli VU (2007) Composition, biomass and secondary production of the macrobenthic invertebrate assemblages in a coastal lagoon exploited for extensive aquaculture: Valle Smarlacca (northern Adriatic Sea). Estuar Coast Shelf S 75:79–89. https://doi.org/10.1016/j.ecss.2007.01.021

    Article  Google Scholar 

  • Popchenko VI (1988) Aquatic malleech worms (Oligochaeta limicola) Northern Europe. Nauka, Leningrad

    Google Scholar 

  • Prokin AA (2008) Aquatic beetles (Coleoptera) of small rivers of the European part of Russia: diversity, biocenotic and indicator role. In: Ecosystems of small rivers: biodiversity, ecology, protection. Lectures and materials of reports of the All-Russian school—conference. Borok, pp 38–53

  • Przhiboro A (2014) Diversity and adaptations of immature Diptera in semiaquatic habitats at shorelines of hypersaline lakes in the Crimea, with a brief review of Diptera in mineralized bodies of water. Acta Geol Sin-Engl 88(s1):98–100. https://doi.org/10.1111/1755-6724.12266_22

    Article  Google Scholar 

  • Ree H, Yum J-H (2006) Redescription of Chironomus salinarius (Diptera: Chironomidae), nuisance midges that emerged in brackish water of Jinhae-man (Bay), Kyongsangnam-do, Korea. Korean J Parasitol 44(1):63–66. https://doi.org/10.3347/kjp.2006.44.1.63

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutherford JC, Kefford BJ (2005) Effects of salinity on stream ecosystems: improving models for macroinvertebrates. CSIRO Land and Water Technical Report 22/05, Canberra

  • Semernoi VP, Sidorov DA (1913) New data on the Oligochaeta fauna from the Giporei of watercourses in the south of Primorsky Krai. Amur Ecol J 3:244–247

    Google Scholar 

  • Shadrin NV, Anufriieva EV, Belyakov VP, Bazhora AI (2017) Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. Eur Zool J 84:61–72. https://doi.org/10.1080/11250003.2016.1273974

    Article  CAS  Google Scholar 

  • Short TM, Black JA, Birge WJ (1991) Ecology of a saline stream: community responses to spatial gradients of environmental conditions. Hydrobiologia 226:167–178

    Google Scholar 

  • Shubin AO (1998) Microbiotopic distribution of waders (Charadriiformes, Charadrii) in places forage accumulations on the southwest coast of the Caspian Sea. Russ J Zool 77(3):325–336

    Google Scholar 

  • Shubin AO, Ivanov AP (2005) Ecological segregation of migrating waders on steppe reservoirs. European Russia. Russ J Zool 84(6):707–718

    Google Scholar 

  • Sukharev EA (2015) Effect of food resources on the distribution and ecological separation of migrating shorebirds. Dissertation, Moscow State Pedagogical University

  • Szadziewski R, Gwizdalska-Kentzer M, Sontag E (2007) Predatory biting midges of the genus Sphaeromias (Diptera: Ceratopogonidae) in Europe. Pol J Entomol 76:293–302

    Google Scholar 

  • Szadziewski R, Golovatyuk LV, Sontag E, Urbanek A, Zinchenko TD (2016) All stages of the Palaearctic predaceous midge Palpomyia schmidti Goetghebuer, 1934 (Diptera: Ceratopogonidae). Zootaxa 4137(1):85–94. https://doi.org/10.11646/ZOOTAXA.4137.1.6

    Article  PubMed  Google Scholar 

  • Székely T, Bamberger Z (1992) Predation of waders (Charadrii) on prey populations: an exclosure experiment. J Anim Ecol 61(2):447–456

    Google Scholar 

  • ter Braak CJF (1990) Update notes: CANOCO Version 3.10. Agricultural Mathematics Group, Wageningen

    Google Scholar 

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 69–173

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002a) CANOCO reference manual and canodraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002b) CANOCO for windows: software for community ordination (version 4.5). Microcomputer Power, Ithaca New York

    Google Scholar 

  • Timm T (2012) Profundal oligochaete assemblages in Palaearctic lakes. Turk J Zool 36(1):121–131. https://doi.org/10.3906/zoo-1002-51

    Article  Google Scholar 

  • Tod SP, Schmid-Araya JM (2009) Meiofauna versus macrofauna: secondary production of invertebrates in a lowland chalk stream. Limnol Oceanogr 54:450–456

    Google Scholar 

  • Tokeshi M (1995) Production ecology. In: Armitage PD, Cranston PS, Pinder LCV (eds) The Chironomidae: biology and ecology of non-biting midges. Chapman and Hall, London, pp 269–296

    Google Scholar 

  • Ubero-Pascal NA, Puig MA, Solar AG (1998) The mayflies from Segura River basin (S.E. Spain): Faunisticstudy (Insecta: Ephemeroptera). Bol Aso Esp Ent 22:151–170

    Google Scholar 

  • Väinölä RJ, Witt DS, Grabowski M, Bradbury JH, Jazdzewski K, Sket B (2007) Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Freshwater Animal Diversity Assessment. Part Dev Hydrobiol Book Ser 198:241–255

    Google Scholar 

  • Velasco J, Millán A, Hernández J, Gutiérrez C, Abellán P, Sánchez D, Ruiz M (2006) Response of biotic communities to salinity changes in a Mediterranean hyper stream. Saline Syst 2:12–15. https://doi.org/10.1186/1746-1448-2-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodno-bolotnye ugod’ya Priel’ton’ya (Wetlands of cisElton region) (2005). Video-Khaitek, Volgograd

  • Wang HZ, Cui YD (2007) On the studies of Microdrile Oligochaeta and Aeolosomatidae (Annelida) in China: brief history and species checklist. Acta Hydrobiol Sin 31:87–98

    Google Scholar 

  • Williams DD, Hogg ID (1988) The ecology and production of invertebrates in a Canadian coldwater spring. Holarctic Ecol 11:41–54

    CAS  Google Scholar 

  • Yan Y, Li X (2006) Production dynamics and trophic basis of dominant chironomids (Diptera: Chironomidae) in a subtropical stream in China. J Freshw Ecol 21:439–448

    Google Scholar 

  • Yemelyanova AY, Temerova TA, Degermendzhi AG (2000) Experimental Study of Nutrition and growth Gammarus lacustris Sars (Amphipoda, Gammaridae) of Oz. Shira (Khakassia). Inland Water Biol 4:86–93

    Google Scholar 

  • Zadereev ES, Tolomeyev AP, Drobotov AV, Emeliyanova AY, Gubanov MV (2010) The vertical distribution and abundance of Gammarus lacustris in the pelagic zone of the meromictic lakes Shira and Shunet (Khakassia, Russia). Aquat Ecol 44(3):531–539

    CAS  Google Scholar 

  • Zaika BE (1972) Specific production of water invertebrates. Naukova Dumka, Kiev

    Google Scholar 

  • Zerguine K (2014) Chironomidae (Diptera: Insecta) of temporary salt lakes in the eastern Hauts Plateaux of Algeria. Experiment 25:1704–1710

    Google Scholar 

  • Zinchenko TD, Golovatyuk LV, Gusakov VA (2012) Long-term dynamics of bottom communities in estuaries of saline rivers in the Lake Basin. El’ton. Problems of studying the marginal structures of biocenosis. Saratov University Press, Saratov

    Google Scholar 

  • Zinchenko TD, Gladyshev MI, Makhutova ON, Sushchik NN, Kalachova GS, Golovatyuk LV (2014) Rivers provide arid landscapes with a considerable amount of biochemically valuable production of chironomid (Diptera) larvae. Hydrobiologia 722:115–128. https://doi.org/10.1007/S10750-013-1684-5

    Article  Google Scholar 

  • Zinchenko TD, Golovatyuk LV, Abrosimova EV, Popchenko TV (2017) Macrozoobenthos in Saline Rivers in the Lake Elton Basin: spatial and Temporal Dynamics. Inland Water Biol 10(4):384–398

    Google Scholar 

  • Zorina OV, Zinchenko TD (2009) A New Species of the Genus Tanytarsus van der Wulp (Dirtera, Chironomidae) from a Saline River in the Elton Lake Basin (Volgogradskaya oblast’, Russia). Evraziat Entomol Z 8(1):105–110

    Google Scholar 

Download references

Acknowledgements

This research was supported by Russian Foundation for Basic Research (RFBR) (Projects Numbers 13-04-00740, 15-04-03341, 17-04-00135). LN is supported by the Deutsche Forschungsgemeinschaft (DFG) Project NA 760/5-1. Statistical study is supported by the Russian Science Foundation (Grant 16-17-10118). We are grateful to E.V. Makarchenko and O.V. Zorina for assistance in determining Chironomidae family, A.A. Prokin for assistance in determining the Coleoptera and Heteroptera groups, T.V. Popchenko for determining Oligochaeta group and E.M. Kurina for helping in determining the number of generations of Gammarus lacustris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa V. Golovatyuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovatyuk, L.V., Zinchenko, T.D. & Nazarova, L.B. Macrozoobenthic communities of the saline Bolshaya Samoroda River (Lower Volga region, Russia): species composition, density, biomass and production. Aquat Ecol 54, 57–74 (2020). https://doi.org/10.1007/s10452-019-09726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09726-z

Keywords

Navigation