Aquatic Ecology

, Volume 52, Issue 2–3, pp 193–210 | Cite as

The importance of herbivory by protists in lakes of a tropical floodplain system

  • Bianca Ramos Meira
  • Fernando Miranda Lansac-Toha
  • Bianca Trevizan Segovia
  • Paulo Roberto Bressan Buosi
  • Fábio Amodêo Lansac-Tôha
  • Luiz Felipe Machado Velho


Inland aquatic ecosystems play a critical role in the global carbon cycle, processing a great fraction of the organic matter coming from terrestrial ecosystems, and the microbial food web is crucial in this process. Thus, we aimed to evaluate whether the food resource of planktonic protozoa comes mainly from small primary producers or heterotrophic bacteria in tropical shallows lakes, assuming the hypothesis that, in general, picocyanobacteria would be the main food resource for protists. We also expected that the autotrophic fraction would be mainly related to protists at the surface of the environments, while the heterotrophic fraction would be more important at the lower strata of the water column. We performed size-fractionation experiments to evaluate the effects of predation of protists on heterotrophic bacteria and picocyanobacteria. We also sampled planktonic organisms at the subsurface and bottom of 20 lakes in a Neotropical floodplain. We found an herbivory preference of heterotrophic flagellates, while ciliates seem to exert a stronger impact on heterotrophic bacteria. We also found no relationship between heterotrophic bacteria and protists in the field data, whereas positive relationships between picocyanobacteria and protists were observed in environments where there was sunlight. Thus, both heterotrophic bacteria and picocyanobacteria were important components in the food webs of tropical shallow lakes. Moreover, the trophic cascade caused by zooplankton predation suggests that protists are efficient in transferring the energy from the base of microbial food webs to higher trophic levels.


Microbial food web Shallow lakes Heterotrophic flagellates Ciliates Picocyanobacteria Bacteria 



The authors thank the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupelia) and the Graduate Program in Ecology of Continental Aquatic Environments for logistical support. This project is part of the Long-Term Ecological Project (LTER)—The Upper Paraná River floodplain: structure and environmental processes—supported by the Brazilian National Research Council (CNPq). BRM, FALT, LFMV also have their researches continuously supported by CNPq.

Supplementary material

10452_2018_9654_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 40 kb)


  1. Agasild H, Zingel P, Nõges T (2012) Live labeling technique reveals contrasting role of crustacean predation on microbial loop in two large shallow lakes. Hydrobiologia 684:177–187CrossRefGoogle Scholar
  2. Agasild H, Zingel P, Karus K, Kangro K, Salujõe J, Nõges T (2013) Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshw Biol 58:183–191CrossRefGoogle Scholar
  3. Amado AM, Meirelles-Pereira F, Vidal LDO, Sarmento H, Suhett A, Farjalla VF, Cotner JB, Roland F (2013) Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Front Microbiol 4:1–8CrossRefGoogle Scholar
  4. Angeler DG, Sánchez-Carrillo S, Rodrigo MA, Viedma O, Alvarez-Cobelas M (2005) On the importance of water depth, macrophytes and fish in wetland picocyanobacteria regulation. Hydrobiologia 549:23–32CrossRefGoogle Scholar
  5. Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. In: Rotifer symposium VI. Springer Netherlands, pp 231–246Google Scholar
  6. Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The Flagellates. Taylor & Francis Ltd, London, pp 240–268Google Scholar
  7. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Progr Ser 10:257–263CrossRefGoogle Scholar
  8. Borsheim KY, Bratbak G (1987) Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171–175CrossRefGoogle Scholar
  9. Botrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hilbricht-Ilkowska A, Kurazawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norw J Zool 24:419–456Google Scholar
  10. Burian A, Schagerl M, Yasindi A (2013) Microzooplankton feeding behaviour: grazing on the microbial and the classical food web of African soda lakes. Hydrobiologia 710:61–72CrossRefGoogle Scholar
  11. Callieri C, Karjalainen SM, Passoni S (2002) Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J Plankton Res 24:785–796CrossRefGoogle Scholar
  12. Callieri C, Modenutti B, Queimalinos C, Bertoni R, Balseiro E (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquatic Ecol 41:511–523CrossRefGoogle Scholar
  13. Cheng SH, Aoki S, Maeda M, Hino A (2004) Competition between the rotifer Brachionus rotundiformis and the ciliate Euplotes vannus fed on two different algae. Aquaculture 241:331–343CrossRefGoogle Scholar
  14. Comte J, Jacquet S, Viboud S, Fontvieille D, Millery A, Paolini G, Domaizon I (2006) Microbial community structure and dynamics in the largest natural French lake (Lake Bourget). Microb Ecol 52:72–89PubMedCrossRefGoogle Scholar
  15. Dobberfuhl DR, Miller R, Elser JJ (1997) Effects of a cyclopoid copepod (Diacyclops thomasi) on phytoplankton and the microbial food web. Aquat Microb Ecol 12:29–37CrossRefGoogle Scholar
  16. Ducklow HW, Purdie DA, Williams PJL, Davies JM (1996) Bacterioplankton: a sink for carbon in a coastal plankton community. Science 232:865–867CrossRefGoogle Scholar
  17. Elmoor-Loureiro M (1997) Manual de identificação de cladóceros límnicos do Brasil. Universa, BrasíliaGoogle Scholar
  18. Farjalla VF, Amado AM, Suhett AL, Meirelles-Pereira F (2009) DOC removal paradigms in highly humic aquatic ecosystems. Environ Sci Pollut R 16:531–538CrossRefGoogle Scholar
  19. Fenchel T (1982) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42CrossRefGoogle Scholar
  20. Fenchel T (1986) Protozoan filter feeding. Progr Protisol 1:65–113Google Scholar
  21. Fermani P, Diovisalvi N, Torremorell A, Lagomarsino L, Zagarese HE, Unrein F (2013) The microbial food web structure of a hypertrophic warm temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714:115–130CrossRefGoogle Scholar
  22. Foissner W, Berger H (1996) A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshw Biol 35:375–482Google Scholar
  23. Foissner W, Berger H, Schaumburg J (1999) Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft 3:1–793Google Scholar
  24. Gasol JM, Vaqué D (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria—a general phenomenon across aquatic systems. Limnol Oceanogr 38:657–665CrossRefGoogle Scholar
  25. Golterman HL, Clymo RS, Ohmstad MAM (1978) Methods for physical and chemical analysis of fresh water. Blackwell Scientific, OxfordGoogle Scholar
  26. Gonzalez JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589PubMedPubMedCentralGoogle Scholar
  27. Hahn MW, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. Microb Ecol 35:113–121CrossRefGoogle Scholar
  28. Jack JD, Gilbert JJ (1997) Effects of metazoan predators on ciliates in freshwater plankton communities. J Eukaryot Microbiol 44:194–199CrossRefGoogle Scholar
  29. Jasser I, Kostrzewska-Szlakowska I (2012) Fading out of the trophic cascade at the base of the microbial food web caused by changes in the grazing community in mesocosm experiments. Oceanol Hydrobiol Stud 41:1–11CrossRefGoogle Scholar
  30. Jeuck A, Arndt H (2013) A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms. Protist 164:842–860PubMedCrossRefGoogle Scholar
  31. Jonsson PR, Tiselius P (1990) Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44CrossRefGoogle Scholar
  32. Jürgens K, Jeppesen E (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22:1047–1070CrossRefGoogle Scholar
  33. Jürgens K, Matz C (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie V Leeuw 81:413–434CrossRefGoogle Scholar
  34. Kalff J (2002) Limnology. Prentice Hall, New JerseyGoogle Scholar
  35. Karus K, Paaver T, Agasild H, Zingel P (2014) The effects of predation by planktivorous juvenile fish on the microbial food web. Eur J Protistol 50:109–121PubMedCrossRefGoogle Scholar
  36. Kisand V, Zingel P (2000) Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquat Microb Ecol 22:135–142CrossRefGoogle Scholar
  37. Koste W (1978) Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight-Monogononta. Gebrüder Borntraeger, BerlinGoogle Scholar
  38. Lampert W (1989) The adaptive significance of diel vertical migration of zooplankton. Functional Ecol 3:21–27CrossRefGoogle Scholar
  39. Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491:221–239CrossRefGoogle Scholar
  40. Lewis WM Jr (1996) Tropical lakes: how latitude makes a difference. In: Schiemer F, Boland KT (eds) Perspectives in tropical limnology, vol 4364. SPB Academic Publishing, Amsterdam, pp 43–64Google Scholar
  41. Li J, Chen F, Liu Z, Zhao X, Yang K, Lu W, Cui K (2016) Bottom-up versus top-down effects on ciliate community composition in four eutrophic lakes (China). Eur J Protistol 53:20–30PubMedCrossRefGoogle Scholar
  42. Longmuir A, Shurin JB, Clasen JL (2007) Independent gradients of producer, consumer, and microbial diversity in lake plankton. Ecology 88:1663–1674PubMedCrossRefGoogle Scholar
  43. Mackereth FYH, Heron J, Talling JJ (1978) Water analysis: some revised methods for Limnologists. Freshw Biol Assoc 36:1–120Google Scholar
  44. Madoni P (1984) Estimation of the size of freshwater ciliate populations by a subsampling technique. Hydrobiologia 111:201–206CrossRefGoogle Scholar
  45. Meira BR, Lansac-Tôha FM, Segovia BT, Oliveira FR, Buosi PRB, Jati S, Rodrigues LC, Lansac-Tôha FA, Velho LFM (2017) Abundance and size structure of planktonic protist communities in a Neotropical floodplain: effects of top-down and bottom-up controls. Acta Limnol Bras 29:e104CrossRefGoogle Scholar
  46. Michels E, De Meester L (1998) The influence of food quality on the phototactic behaviour of Daphnia magnaStraus. Hydrobiologia 379:199–206CrossRefGoogle Scholar
  47. Mieczan T, Adamczuk M, Pawlik-Skowrońska B, Toporowska M (2015a) Eutrophication of peatbogs: consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments. Aquat Microb Ecol 74:121–141CrossRefGoogle Scholar
  48. Mieczan T, Niedźwiecki M, Adamczuk M, Bielańska-Grajner I (2015b) Stable isotope analyses revealed high seasonal dynamics in the food web structure of a peatbog. Int Rev Hydrobiol 100:141–150CrossRefGoogle Scholar
  49. Mitchell GC, Baker JH, Sleigh MA (1988) Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J Protozool 35:219–222CrossRefGoogle Scholar
  50. Montagnes DJS, Morgan G, Bissinger JE, Atkinson D, Weisse T (2008) Short-term temperature change may impact freshwater carbon flux: a microbial perspective. Glob Chan Biol 14:2810–2822CrossRefGoogle Scholar
  51. Montemezzani V, Duggan IC, Hogg ID, Craggs RJ (2015) A review of potential methods for zooplankton control in wastewater treatment high rate algal ponds and algal production raceways. Algal Res 11:211–226CrossRefGoogle Scholar
  52. Müller H, Geller W (1993) Maximum growth rates of aquatic ciliates protozoa: the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327Google Scholar
  53. Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, New York, pp 303–307Google Scholar
  54. Ohno H, Yoshinari E, Sato-Okoshi W, Nishitani G (2013) Feeding and growth characteristics of a diatom-feeding flagellate isolated from the bottom sediment of Onagawa Bay, Northeastern Japan. J Mar Sci 3:9–14Google Scholar
  55. Okada M, Taniuchi Y, Murakami A, Takaichi S, Ohtake S, Ohki K (2007) Abundance of picophytoplankton in the halocline of a meromictic lake, Lake Suigetsu, Japan. Limnology 8:271–280CrossRefGoogle Scholar
  56. Palijan G (2017) Short-term response of the phytoplankton size structure to flooding. Inland Waters 7:192–199CrossRefGoogle Scholar
  57. Pauleto GM, Velho LFM, Buosi PRB, Brão AFS, Lansac-Tôha FA, Bonecker CC (2009) Spatial and temporal patterns of ciliate species composition (Protozoa: Ciliophora) in the plankton of the Upper Paraná River floodplain. Braz J Biol 69:517–527PubMedCrossRefGoogle Scholar
  58. Pauleto GM, Oliveira FRD, Segovia BT, Meira BR, Lansac-Tôha F, Buosi PRB, Velho LFM (2017) Intra-annual variation in planktonic ciliate species composition (Protista: Ciliophora) in different strata in a shallow floodplain lake. Acta Limnol Bras 29:e107CrossRefGoogle Scholar
  59. Pernthaler J, Šimek K, Sattler B, Schwarzenbacher A, Bobkova J, Psenner R (1996) Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J Plankton Res 18:443–462CrossRefGoogle Scholar
  60. Picapedra PHS, Lansac-Tôha FA, Bialetzki A (2015) Diel vertical migration and spatial overlap between fish larvae and zooplankton in two tropical lakes, Brazil. Braz J Biol 75:352–361PubMedCrossRefGoogle Scholar
  61. Pirlot S, Unrein F, Descy JP, Servais P (2007) Fate of heterotrophic bacteria in Lake Tanganyika (East Africa). Microbiol Ecol 62:354–364CrossRefGoogle Scholar
  62. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  63. Posch T, Pernthaler J, Alfreider A, Psenner R (1997) Cell-specific respiratory activity of aquatic bacteria studied with the tetrazolium reduction method, cyto-clear slides, and image analysis. Appl Environ Microbiol 63:867–873PubMedPubMedCentralGoogle Scholar
  64. Ptacnik R, Sommer U, Hansen T, Martens V (2004) Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445CrossRefGoogle Scholar
  65. Reguera B (1984) The effect of ciliate contamination in mass cultures of the rotifer, Brachionus plicatilis OF Müller. Aquaculture 40:103–108CrossRefGoogle Scholar
  66. Reid JW (1985) Chave de identificação e lista de referências bibliograficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Bol Zool 9:17–143CrossRefGoogle Scholar
  67. Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct Ecol 3:141–159Google Scholar
  68. Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, CambridgeGoogle Scholar
  69. Reynolds CS (2006) The Ecology of Phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  70. Rothhaupt K (1990) Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol Oceanogr 35:16–23CrossRefGoogle Scholar
  71. Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters-an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14CrossRefGoogle Scholar
  72. Sarmento H (2012) New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686:1–14CrossRefGoogle Scholar
  73. Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy JP (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw Biol 53:756–771CrossRefGoogle Scholar
  74. Scheffer M, Jeppesen E (1998) Alternative stable states. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 91–114Google Scholar
  75. Segovia BT, Pereira DG, Bini LM, Velho LFM (2014) Effects of bottom-up and top-down controls on the temporal distribution of planktonic heterotrophic nanoflagellates are dependent on water depth. Hydrobiologia 736:155–164CrossRefGoogle Scholar
  76. Segovia BT, Pereira DG, Bini LM, Meira BR, Nishida VS, Lansac-Tôha FA, Velho LFM (2015) The role of microorganisms in a planktonic food web of a floodplain lake. Microb Ecol 69:225–233PubMedCrossRefGoogle Scholar
  77. Segovia BT, Domingues CD, Meira BR, Lansac-Toha FM, Fermani P, Unrein F, Lobão LM, Roland F, Velho LFM, Sarmento H (2016) Coupling between heterotrophic nanoflagellates and bacteria in fresh waters: Does latitude make a difference? Front Microbiol 7:114PubMedPubMedCentralCrossRefGoogle Scholar
  78. Segovia BT, Meira BR, Lansac-Toha FM, Amadeo FE, Unrein F, Velho LFM, Sarmento H (2018) Growth and cytometric diversity of bacterial assemblages under different top–down control regimes by using a size-fractionation approach. J Plankton Res 0:1–13Google Scholar
  79. Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711CrossRefGoogle Scholar
  80. Sherr EB, Sherr BF (1988) Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr 33:1225–1227CrossRefGoogle Scholar
  81. Sherr EB, Sherr BF (1993) Preservation and storage of samples for enumeration of heterotrophic protists. In: Kemp P, Sherr BF, Sherr EB, Cole J (eds) Current methods in aquatic microbial ecology. Lewis Publishers, New York, pp 207–212Google Scholar
  82. Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28:223–235PubMedCrossRefGoogle Scholar
  83. Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microb 58:3715–3720Google Scholar
  84. Šimek K, Straškrabová V (1992) Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J Plankton Res 14:773–787CrossRefGoogle Scholar
  85. Šimek K, Macek M, Pernthaler J, Straskrabová V, Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J Plankton Res 18:597–613CrossRefGoogle Scholar
  86. Šimek K, Babenzien D, Bitl T, Koschel R, Macek M, Nedoma J, Vrba J (1998) Microbial food webs in an artificially divided acidic bog lake. Int Rev Hydrobiol 83:3–18CrossRefGoogle Scholar
  87. Sonntag B, Summerer M, Sommaruga R (2011) Factors involved in the distribution pattern of ciliates in the water column of a transparent alpine lake. J Plankton Res 33:541–546CrossRefGoogle Scholar
  88. Stenuite S, Pirlot S, Tarbe AL, Sarmento H, Lecomte M, Thill S, Leporcq B, Sinyinza D, Descy JP, Servais P (2009) Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika). Freshw Biol 54:1300–1311CrossRefGoogle Scholar
  89. Tadonleké R, Pinel-Alloul B, Bourbonnais N, Pick FR (2004) Factors affecting the bacteria-heterotrophic nanoflagellate relationship in oligo–mesotrophic lakes. J Plankton Res 26:681–695CrossRefGoogle Scholar
  90. Tarbe AL, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Descy JP (2011) Protist herbivory: a Key pathway in the pelagic food web of lake Tanganyika. Microb Ecol 62:314–323PubMedCrossRefGoogle Scholar
  91. Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13CrossRefGoogle Scholar
  92. Unrein F, Massana R, Alonso-Sáez L, Gasol JM (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469CrossRefGoogle Scholar
  93. Verity PG (1988) Chemosensory behavior in marine planktonic ciliates. Bull Mar Sci 43:772–782Google Scholar
  94. Waterbury JB, Watson SW, Valois FW, Franks D (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:71–120Google Scholar
  95. Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, pp 327–370CrossRefGoogle Scholar
  96. Weisse T (2002) The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. A Van Leeuw 81:327–341CrossRefGoogle Scholar
  97. Weisse T, Frahm A (2002) Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata, Balanion planctonicum). Freshw Biol 47:53–64CrossRefGoogle Scholar
  98. Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes DJ (2016) Functional ecology of aquatic phagotrophic protists—concepts, limitations, and perspectives. Eur J Protistol 55:50–74PubMedCrossRefGoogle Scholar
  99. Wickham SA (1995) Trophic relations between cyclopoid copepods and ciliated protists: complex interactions link the microbial and classic food webs. Limnol Oceanogr 40:1173–1181CrossRefGoogle Scholar
  100. Wieltschnig C, Wihlidal P, Ulbricht T, Kirschner AKT, Velimirov B (1999) Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environment. Aquat Microb Ecol 17:77–89CrossRefGoogle Scholar
  101. Wieltschnig C, Kirschner AKT, Steitz A, Velimirov B (2001) Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microb Ecol 42:159–167PubMedGoogle Scholar
  102. Zingel P, Agasild H, Noges T, Kisand V (2007) Ciliates are the dominant grazers on pico-and nanoplankton in a shallow, naturally highly eutrophic lake. Microb Ecol 53:134–142PubMedCrossRefGoogle Scholar
  103. Zingel P, Agasild H, Karus K, Kangro K, Tammert H, Tõnno I, Feldmann T, Nõges T (2016) The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake. Eur J Protistol 52:22–35PubMedCrossRefGoogle Scholar
  104. Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Bianca Ramos Meira
    • 1
  • Fernando Miranda Lansac-Toha
    • 1
  • Bianca Trevizan Segovia
    • 1
  • Paulo Roberto Bressan Buosi
    • 1
  • Fábio Amodêo Lansac-Tôha
    • 1
  • Luiz Felipe Machado Velho
    • 1
    • 2
  1. 1.Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia)Universidade Estadual de MaringáMaringáBrazil
  2. 2.Programa de Pós-Graduação em Tecnologias LimpasCentro Universitário Cesumar - Unicesumar/Instituto Cesumar de Ciência, Tecnologia e Inovação (ICETI)MaringáBrazil

Personalised recommendations